
Finding Error Handling Bugs in OpenSSL using Coccinelle

Julia Lawall∗, Ben Laurie†, René Rydhof Hansen‡, Nicolas Palix∗ and Gilles Muller§
∗University of Copenhagen, Email: {julia,npalix}@diku.dk

†Google, Email: benl@google.com
‡Aalborg University, Email: rrh@cs.aau.dk
§INRIA-Regal, Email: Gilles.Muller@lip6.fr

Abstract—OpenSSL is a library providing various function-
alities relating to secure network communication. Detecting
and fixing bugs in OpenSSL code is thus essential, particularly
when such bugs can lead to malicious attacks. In previous
work, we have proposed a methodology for finding API usage
protocols in Linux kernel code using the program matching
and transformation engine Coccinelle. In this work, we report
on our experience in applying this methodology to OpenSSL,
focusing on API usage protocols related to error handling. We
have detected over 30 bugs in a recent OpenSSL snapshot, and
in many cases it was possible to correct the bugs automatically.
Our patches correcting these bugs have been accepted by
the OpenSSL developers. This work furthermore confirms the
applicability of our methodology to user-level code.

Keywords-bug finding, OpenSSL, Coccinelle

I. INTRODUCTION

OpenSSL is an open source implementation of the ubiq-
uitous Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols essential for providing secure
communication over the Internet. OpenSSL is available for a
large number of operating systems, and is widely distributed
and deployed on many platforms. It has also been used as
an essential building block in a number of projects related
to secure communication infrastructure, e.g., OpenVPN1

and mod_ssl.2 This makes OpenSSL a tempting target
for attackers. It is thus vital that bugs are found and fixed as
early in the development cycle as possible, hopefully before
they can be used for malicious attacks.

In our previous work [1], we have developed a multi-step
strategy for finding API function usage protocols in C code,
and then finding uses of these API functions that do not follow
these protocols. This strategy is derived from our study of
Linux kernel code, in which we have observed that there are
stereotypical code fragments controlling API function usage
that characterize a wide range of API functions, such as the
mechanism for reacting to detected errors or the means of
managing allocated memory. Based on these observations,
we use the Coccinelle program matching and transformation
tool [2] first to develop and apply patterns that characterize
these stereotypical code fragments, to find functions that
have properties that are considered to be of interest, and then

1http://www.openvpn.net/
2http://www.modssl.org/

to develop patterns that describe typical incorrect usages of
these functions, to find bugs in the code.

User-level code, like OpenSSL, and kernel-level code,
like Linux, however, have different constraints, and each
software project has its own coding conventions. Thus, it is
not clear that the same patterns and bug finding strategies are
applicable to both. Indeed, initial experiments with OpenSSL
carried out by a student in our group [3] showed that patterns
searching for problems such as duplicate testing of a value
for NULL that frequently indicate bugs in Linux code either
turned up no matches in OpenSSL or turned up matches
that were not considered to be real bugs by the OpenSSL
community. In this work, on the other hand, we have focused
on a bug type that was previously highlighted in OpenSSL
code by the security vulnerability report CVE-2008-5077,3

at the suggestion of the second author, who is an OpenSSL
expert. This vulnerability is based on the observation that
many functions in OpenSSL return non-positive integers to
indicate various kinds of errors. Nevertheless, callsite error-
checking code often considers only 0 to be an error and any
other value to be success. This pattern is not found in Linux,
and thus OpenSSL-specific knowledge is needed.

We have detected around 30 bugs in a recent (September
11, 2009) snapshot of OpenSSL (openssl-1.0.0-stable-SNAP-
20090911). In many cases, we were able to use the program
transformation capabilities of the Coccinelle engine to
automatically correct these bugs. Most of the corresponding
bug fixing patches have been been submitted to the OpenSSL
developers, and all of these submissions have been accepted.
In the rest of this paper, we present Coccinelle (Section
II) and then present our approach and its instantiation for
finding error handling bugs in OpenSSL (Section III). We
then present our results in detail (Section IV), and then briefly
consider related work and conclude (Sections V and VI).

II. COCCINELLE

Coccinelle is a program matching and transformation
engine, targeting C code. Coccinelle provides the Semantic
Patch Language (SmPL) for specifying program matches and
transformations as semantic patches. A feature of semantic
patches is that they are very close to C code, or more precisely

3http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5077

to patches on C code, and thus are easy for C programmers
to develop and then refine, as new needs appear. In this
section, we present some features of SmPL, as are needed
in this paper. A complete grammar of SmPL is provided at
the Coccinelle website (http://coccinelle.lip6.fr).

A simple semantic patch: Our goal is first to identify
functions that may return both 0 and a negative result to
indicate an error, and then to find calls to such functions
that only test whether the result is 0. To present SmPL,
we assume that we have already identified such a function,
EVP_VerifyFinal, i.e., the function mentioned in CVE-
2008-5077, and we would like to find and fix cases where
the result of calling this function is compared to 0 directly.
In this case, the fix is to convert a test that the result is equal
to 0 to a test that the result is less than or equal to 0, and
to convert a test that the result is not zero to a test that the
result is greater than 0. A semantic patch rule that expresses
the first of these transformations is shown in Figure 1. A
semantic patch rule that expresses the second is similar. The
complete semantic patch consists of these two rules.

1 @@ expression list args; @@
2 − EVP VerifyFinal(args) == 0
3 + EVP VerifyFinal(args) <= 0

Figure 1. A simple semantic patch rule

A semantic patch rule consists of two parts: a set of
metavariable declarations and a code matching and transfor-
mation specification. The set of metavariable declarations is
delimited by @@ (line 1). Metavariables can represent arbitrary
code fragments, and are declared according to the kind of
code they represent, e.g., identifier, expression, statement,
expression of a specific type, etc. In this example, there is
only one metavariable, args, which represents a function
argument list. The matching and transformation specification
then consists of a fragment of C-like code, where subterms
annotated with - should be removed and subterms annotated
with + should be added (lines 2-3). In this case, we remove
any call to EVP_VerifyFinal where the result is tested
to be equal to 0, and then replace it by constructing the same
call, using the binding of the metavariable args, and a test
whether the result is less than or equal to 0.

In addition to matching and transforming atomic fragments
of code, as shown here, Coccinelle can also match and
transform scattered fragments of code connected by an
execution path. This feature will be illustrated later.

Isomorphisms: The semantic patch rule shown above
explicitly compares the result of calling the function EVP_-
VerifyFinal to 0, with the function call being on the left
of == and 0 being on the right. A test for 0 can, however,
have other forms, e.g., the 0 can appear on the left, or it
can be omitted and the ! operator can be used instead. It
would be tedious for the rule developer to explicitly specify
all of these variants. Thus, Coccinelle provides the notion of

isomorphisms, which describe patterns of terms that should
be considered to have the same semantics. Isomorphisms are
defined in an external file, and new isomorphisms can be
specified by the user. The isomorphisms that are relevant to
the semantic patch rule shown in Figure 1 are defined below:

1 Expression
2 @commeq@
3 expression E; constant C;
4 @@
5 E == C <=> C == E

1 Expression
2 @ is zero @
3 expression X;
4 @@
5 X == 0 => !X

The first rule uses <=> to indicate that any comparison
expression in a semantic patch that has a constant on the
right should be considered to match a term with the constant
on the left, and vice versa. The second rule indicates that
a comparison to 0 in a semantic patch can be considered
to match a boolean negation, but, because of the use of =>
rather than <=>, the inverse as not allowed, as it would only
be valid when the negated expression is an integer.

Refining a semantic patch: Our experience with versions
of the above semantic patch rule considering other functions
shows that sometimes the rule does not match, because the
developer has enclosed the function call in parentheses. We
can thus extend the above semantic patch rule to take this
possibility into account, as shown in Figure 2.

1 @@ expression list args; @@
2 − (EVP VerifyFinal(args)) == 0
3 + EVP VerifyFinal(args) <= 0

Figure 2. A refined version of the simple semantic patch

Another isomorphism ensures that this rule also matches
cases where the parentheses are not present.

Position variables and Python: The semantic patch rules
we have presented both find and fix bugs. Such a rule is
only possible when there is both a general pattern for finding
a bug and a general pattern for fixing it. In some cases,
however, there is only a general pattern for finding the bug,
and the fix has to be performed manually, on a case by
case basis. In this case, it is useful to report information on
where the bug was found in the source code. For this, we use
position variables to record the positions of relevant terms
and then embed Python code in the semantic patch to print
this position information in the desired format.

The extension shown in Figure 3 of the above semantic
patch rule first records the position of the call to EVP_-
VerifyFinal, and then uses a library function defined
by Coccinelle to print a hyperlink to this position in the
source code according to the Emacs Org mode notation.4

This hyperlink makes it easy to access the affected code
from the bug report and make any fixes that are required.

In line 1 of Figure 3, the @@ preceding the metavariable
declaration now specifies the name of the rule, r. This name
allows the rule’s metavariables to be referenced by other rules.

4http://orgmode.org/

1 @r@ expression list args; position p; @@
2 (EVP VerifyFinal@p(args)) == 0
3
4 @script:python@ p << r.p; @@
5 cocci.print main("zero",p)

Figure 3. Using Python

Rule r now additionally declares the metavariable p, which
represents a code position. Such a position variable can be
used to record information about the position of any matched
token in the C code. The token of interest is indicated using
the operator @. In our example, we record the position of each
matched occurrence of EVP_VerifyFinal. The Python
code then inherits this position variable (line 4), and uses its
value in the subsequent call to cocci.print_main. This
function prints information about the position of each call
to EVP_VerifyFinal in Org mode format.

III. THE BUG-FINDING PROCESS

We find bugs using a two-step process [1]: 1) identify
functions that may return negative values and 2) identify call
sites where the error detection code appears to be incorrect.
There is a separate semantic patch for each step. Essentially,
the first semantic patch creates a list of names of functions
that may return a negative result and this list is then used
to instantiate the second semantic patch to find bugs in the
error detection code at the callsites of each function. We
describe these semantic patches in detail below.

A. Step 1: Finding functions that may return a negative result

This step finds functions that somewhere return a negative
value, of any sort. It proceeds in two substeps: first we
perform some normalization, and then we detect functions
that may return a negative value.

Normalization: Some functions return various constant
values directly. Others store the result in a variable, and then
return that value, or return the result of some other computa-
tion. In the latter cases, the code must be analyzed to infer
that the return value of a function may be negative. Because
Coccinelle does not incorporate any dataflow analysis (i.e.,
propagation of variable values to variable references), this
analysis must be encoded in a semantic patch directly. We
thus start with a normalization phase that makes the presence
of negative values explicit in the source code.

A typical example of the need for this normalization is
the following code extracted from the function AES_set_-
decrypt_key in acrypto/aes/aes_x86core.c:

1 status = AES set encrypt key(userKey, bits, key);
2 if (status < 0)
3 return status;

The semantic patch rules performing the normalization
transform this code into the following:

1 @rn exists@
2 identifier f; position ret neg; expression E,E1; constant C;
3 @@
4
5 f(. . .) {
6 <+. . .
7 (
8 return@ret neg (−C);
9 |

10 E = −C
11 . . . when != E=E1
12 return@ret neg (E);
13)
14 . . .+>
15 }
16
17 @ script:python @ f << rn.f; @@
18 print "category1: FN:%s" % f

Figure 4. Finding functions that return a negative result

1 status = AES set encrypt key(userKey, bits, key);
2 if (status < 0) {
3 status = −1;
4 return status;
5 }

The normalization rules first identify conditionals that contain
comparisons to 0, then ensure that the branches of these
conditionals are delimited by braces, and finally insert
assignments to -1 in these branches as needed. These rules
amount to around 70 lines of semantic patch code.

Detecting functions that may return a negative value:
Once negative values are explicit, we can write rules to find
and print the names of functions that return a negative value
along some path in their control-flow graph.

The rules are shown in Figure 4. The first rule, rn, searches
throughout the body of each function f, as indicated by the
nest notation <+... ...+> (lines 6 and 14), to find at least
one occurrence of either a return of a negative constant (line
8) or an assignment of an expression to a negative constant,
such that that expression is eventually returned as the result
of the function (lines 10–12). The relationship between the
assignment and the return is indicated using the notation
“...” (line 11) meaning that there should be a path in the
function’s control-flow graph connecting the assignment to
the return. The annotation when != E=E1 specifies that
the expression matching E should not be reassigned within
this path. The second rule, starting on line 17, is a Python
rule that inherits the name f of the function from rule rn
and prints out this name in the format expected by the
second step. In particular, the printed string indicates that the
semantic patch rules used to find bugs should be instantiated
by replacing FN by the name of the identified function.

Refinements: In studying the initial results of finding
bugs in the uses of the collected functions, we noticed some
frequently occurring false positives, i.e., bug reports for calls
to functions that do not actually use both 0 and negative
values to indicate an error condition. One case is when
the called function is a comparison function, returning -1

1 @@ expression list args; @@
2 − (FN(args)) == 0
3 + FN(args) <= 0
4
5 @expression@ expression list args; @@
6 − (FN(args)) != 0
7 + FN(args) > 0

Figure 5. Finding bugs when the result of a function call is tested directly

when the first argument is less than the second, 0 when the
arguments are identical, and 1 otherwise. In OpenSSL such
functions seem to have names ending with cmp, and thus
we use Python to discard matches where the name of the
matched function has this form (not shown). Another case
is when the called function uses negative values on an error
and 0 on success. While it would be possible to perform bug
detection for such functions, doing so is out of the scope of
this project, and thus we add some SmPL rules (not shown)
to detect the case where a positive value is never returned.

The ability to make these refinements illustrates the
flexibility of the Coccinelle approach. When a frequent
category of false positives is identified, the semantic patch
can be rewritten to filter out this case. Furthermore, it is
possible to write another semantic patch that only matches
the false-positive category, to allow studying these cases in
more detail, in case one of them turns out to be a real bug.

B. Step 2: Finding incorrect error detection at call sites

Given the list of functions that may return 0 or a negative
number to indicate an error, we now detect callsites of these
functions where the error detection code only checks whether
the result is 0. In that case a negative value, which is nonzero,
will cause the error to be overlooked.

The simplest instance of this bug is when the result of the
call is compared to 0 directly. In this case, we can both detect
the bug and correct it automatically,5 as shown in Figure 5.
These rules generalize the one presented in Figure 2. Here,
FN is instantiated to each of the functions identified in the
previous step, by a tool that is external to Coccinelle [1].

A more complex instance of the bug is when the result
of the call is saved in some location. In this case, it may
be tested multiple times: first for being 0, then for being
negative, etc. We are interested in cases where somewhere
between the initial assignment to the location and the next
assignment to the location (or the end of the function, if
there is no subsequent assignment) there are no tests for
negative numbers and there are tests for 0. The rules that
implement this are shown in Figure 6.

The first rule, tested (lines 1-13), identifies some cases
where the result of calling the function is both stored in a
variable and tested to be either positive or non-positive at
the same time. We consider these cases to be correct, as they

5The user should nevertheless always check the result.

1 @tested@
2 expression x; constant C; position p1;
3 @@
4
5 (
6 (x@p1 = FN(. . .)) <= (0 | −C) // comparison with 0 or with −C
7 |
8 (x@p1 = FN(. . .)) < (0 | −C)
9 |

10 (x@p1 = FN(. . .)) > 0
11 |
12 (x@p1 = FN(. . .)) == −C
13)
14
15 @match@
16 expression x, E; position p1!=tested.p1,p2; constant C;
17 @@
18
19 x@p1 = FN(. . .)
20 <. . . when != x <= (0 | −C)
21 when != x < (0 | −C)
22 when != (x > 0 | x == −C)
23 (x@p2 != 0 | x@p2 == 0)
24 . . .>
25 (return . . .; | x++ | x−− | x += E | x −= E | x = E)
26
27 @script:python@ p1 << match.p1; p2 << match.p2; @@
28 cocci.print main("FN",p1)
29 cocci.print secs("test",p2)

Figure 6. Finding bugs when the result of a function call is stored in a
variable

acknowledge that positive and non-positive are the cases of
interest. The position of such an assignment is recorded in
the position variable p1. The second rule, which finds bugs,
then only considers calls that are at other positions than the
ones found here.

The second rule, match (lines 15-26) matches the case
that is considered to be a bug: a variable is initialized to the
result of calling a function that may return a negative value
to indicate an error, and this variable is subsequently only
tested for being equal to or not equal to 0. This rule saves
in position variables the position of the initial assignment
(line 19) and the position of any zero or non-zero tests (line
23). The when declarations inside the nest (<... ...>)
ensure that there is no test for being less than or greater
than 0, or equal to a negative constant.

The semantic patch ends with Python code that prints
the locations of the initial assignment and the zero tests. A
Python rule is only executed if all of its variables, i.e., both
p1 and p2, are bound, and thus we only get output when
there is at least one comparison with 0.

IV. RESULTS

We now present the results of applying our approach to
the September 11, 2009 snapshot of OpenSSL (openssl-1.0.0-
stable-SNAP-20090911). This snapshot contains around 250
000 lines of C code, as calculated using SLOCCount.6 Our
experiments were carried out on a HP ProLiant server with
two 3 GHz quad-core Xeon processors and 16 GB memory.

6http://www.dwheeler.com/sloccount/

Bugs Acc. FP Unk. Files
ASN1 item ex d2i 0 0 1 0 1
BIO ctrl 1 0 0 0 1
BIO write 6 6 0 0 3
BN exp 1 1 0 0 1
CMS get1 ReceiptRequest 2 2 0 0 1
ENGINE ctrl 4 4 1 0 2
EVP PKEY cmp parameters 0 0 1 0 1
EVP PKEY sign 1 1 0 0 1
OPENSSL isservice 1 1 2 0 3
RAND bytes 4 3 0 0 4
RAND pseudo bytes 2 0 0 0 1
UI ctrl 0 0 2 0 2
X509 STORE get by subject 0 0 0 2 1
X509 check purpose 0 0 0 1 1
asn1 cb 0 0 10 0 3
asn1 check tlen 0 0 2 0 1
i2a ASN1 INTEGER 1 1 0 0 1
i2a ASN1 OBJECT 1 1 0 0 1
sk num 0 0 3 0 1
TOTAL 26 20 20 3 30

Table I
RESULTS USING THE SEMANTIC PATCH SHOWN IN FIGURE 5.

Bugs Acc. FP Unk. Files
ASN1 INTEGER get 0 0 2 0 2
BIO ctrl 1 1 0 0 1
EVP DigestVerifyFinal 1 1 0 0 1
EVP SealInit 1 1 0 0 1
RAND bytes 1 1 0 0 1
SSLStateMachine read extract 0 0 1 0 1
UI UTIL read pw 0 0 1 0 1
X509 check purpose 0 0 1 1 2
asn1 cb 0 0 4 0 2
asn1 check tlen 0 0 2 0 1
asn1 template noexp d2i 0 0 1 0 1
dtls1 retrieve buffered fragment 0 0 0 1 1
get cert chain 0 0 1 0 1
i2b PVK bio 2 2 0 0 2
ocsp check issuer 0 0 1 0 1
TOTAL 6 6 14 2 19

Table II
RESULTS USING THE SEMANTIC PATCH SHOWN IN FIGURE 6.

The entire experiment, including both steps, requires around
12 minutes.

Table I presents the reports given by the semantic patch
rules that detect direct tests (Figure 5), and Table II presents
the reports given by the semantic patch rules that detect
tests on stored values (Figure 6). Acc. (accepted) indicates
the number of bugs for which patches have been submitted
to and accepted by the OpenSSL developers. FP indicates
the number of false positives (reports that we believe do
not represent actual bugs). Unk. (unknown) indicates reports
that we were not able to classify as bugs or false positives.
Overall, the rate of false positives is around 50%. This rate
is high, but the overall number of reports is low. It took us a
few hours to separate the real bugs from the false positives.
We expect that this could be done more rapidly by someone
who is more familiar with OpenSSL.

In practice, it turned out to be necessary to perform
the experiments twice. The first time, we applied the
approach described in Section III to the OpenSSL source

code and obtained a number of reports. For these, we
identified the real bugs and submitted patches, including those
generated automatically by the rules shown in Figure 5 to the
OpenSSL developers. All of these patches have been accepted.
Subsequently, however, we realized that the OpenSSL code
contains some macros that are not covered by the rules
used by Coccinelle when parsing C code. These rules were
developed based on our experience with Linux code, and were
thus not sufficient for OpenSSL. We then added information
about four OpenSSL macros, STACK_OF, MS_STATIC,
MS_CALLBACK, and RSA, to the Coccinelle rule set, which
appeared to cover most of the parsing problems. The second
run then found 6 more real bugs, for which we have not
yet had time to submit patches to the OpenSSL developers.
The need to configure Coccinelle with information of the
definitions of macros that do not correspond to C syntax is
an inconvenience, but allows Coccinelle to retain the original
structure of the source program, as opposed to a solution that
relies on first calling the C preprocessor. Furthermore, our
results for OpenSSL show that only a few macro definitions
may have to be provided to obtain a substantial improvement
in the amount of parsed code.

Most of the false positives in our results come from cases
where argument values imply that the code returning negative
values can never be executed. One example is the function
asn1_check_tlen, which only returns a negative value
when it receives an argument indicating that an optional value
should be considered. At the reported call sites, this argument
is a constant that indicates that optional values should not be
considered. asn1_check_tlen is furthermore called by
two other functions for which there are are reports, ASN1_-
item_ex_d2i and asn1_template_noexp_d2i. The
calls to these functions also indicate that the optional values
should not be considered and thus the reports for these
functions are also false positives.

The function OPENSSL_isservice illustrates another
case. This function always return one of three possible
constants: -1, 0, and 1. It is essentially a predicate, where -1
indicates an error, 0 indicates false, and 1 indicates true. In
this case a != 0 test is a bug, but an == 0 test is legitimate.
We found one of the former and two of the latter, i.e., one
real bug and two false positives.

Finally, for BIO_write we found one case in which the
test was checking for a non-zero value in a context where it
should have been testing for an error value. In this case, the
semantic patch of Figure 5 converts the test to > 0. This was
the wrong fix, as the context indicates that the test should
be <= 0. The semantic patch caused us to focus on the
incorrect code, allowing us to manually solve the problem.

A. History

In other work, we have developed a tool, Herodotos [4],
that tracks the history of code fragments that match a given
semantic patch over multiple versions of a software project.

We have applied Herodotos to OpenSSL versions 0.9.8a
through 0.9.8j, released between 2005 and 2008, and to the
semantic patches defined in Figures 5 and 6, to obtain a
history of error handling bugs. We have found that almost
all of the bugs found here have been present since at least
version 0.9.8a, with a handful introduced at a later date,
either due to some change in the code or the introduction
of a new file. The only bugs that were corrected were
in three calls to EVP_VerifyFinal and four calls to
X509_verify_cert, which were related to CVE-2008-
5077, and in one call to CMS_SignerInfo_verify_-
content, which was related to CVE-2009-0591.7

The long lifetime of the bugs found here shows the value
of bug finding tools. Furthermore, as compared to other
bug finding tools, Coccinelle can easily be configured via
semantic patches to find new potential bug types, once they
becomes apparent. Indeed all of the bugs found here could
have been found and fixed at the time of the release of the
first CVE, CVE-2008-5077, in January 2009.

V. RELATED WORK

Many tools have been developed to aid in the automatic
bug detection. We focus on approaches that infer API usage
protocols and that have considered related bugs in OpenSSL.

Engler et al. [5] pioneered the approach of searching for
usage protocols in systems code, represented by common
code patterns, and then searching for deviations in these
patterns, which are considered to be bugs. This approach and
subsequent protocol finding approaches, such as PR-Miner [6]
and the work of Ramanathan et al. [7], use statistics to identify
common patterns. In contrast, our approach incorporates
the user’s knowledge about common patterns in the given
software project. Our approach was presented in previous
work in the context of Linux kernel code [1]. This paper
extends it to user-level code, specifically OpenSSL.

Dillig et al. [8] propose an approach to finding “source-
sink” inconsistencies, where the means of creating a value
and the means of using it are inconsistent. They also consider
OpenSSL, but their experiments focus on the use of values
that might be NULL, rather than integer-typed error codes.

VI. CONCLUSION

In this paper, we have shown the applicability of a bug-
finding strategy developed for Linux code to OpenSSL code.
This bug-finding strategy distinguishes itself from other
approaches in that it is highly automated, but relies on user
expertise to create bug-finding patterns. Thus, it is sensitive
to the differences between software projects. We have used
our approach to find over 30 bugs in OpenSSL code, and
the overall number of bug reports is manageable for manual
validation. We observe that the bug finding rules developed
here would not be relevant to Linux code, which has been the

7http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0591

main focus of our previous work, because Linux functions do
not use both 0 and negative values to signal an error. Other
software may use other error reporting protocols. Given
knowledge about these protocols, appropriate rules for such
software could be developed as well.

OpenSSL is a library, and thus many of its functions are
also called directly by external code. It could thus be helpful
to apply our rules to such code. None of the bugs that we
found in the current snapshot of OpenSSL seem to represent
a serious security threat. Nevertheless, as open source code,
it is useful for it to be correct and consistent, so that it can
reliably serve as a model for others who want to use these
functions, perhaps in a more security-sensitive context.

REFERENCES

[1] J. L. Lawall, J. Brunel, R. R. Hansen, H. Stuart, G. Muller,
and N. Palix, “WYSIWIB: A declarative approach to finding
protocols and bugs in Linux code,” in The 39th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks, (DSN 2009), Estoril, Portugal, Jun. 2009, pp.
43–52.

[2] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Docu-
menting and automating collateral evolutions in Linux device
drivers,” in EuroSys 2008, Glasgow, Scotland, Mar. 2008, pp.
247–260.

[3] S. Rievers, “Finding bugs in open source software using
coccinelle,” Aug. 2009, bachelor’s project, DIKU, University
of Copenhagen.

[4] N. Palix, J. Lawall, and G. Muller, “Tracking code patterns
over multiple software versions with Herodotos,” in Proc. of the
ACM International Conference on Aspect-Oriented Software
Development, AOSD’10, Rennes and Saint Malo, France, Mar.
2010, to appear.

[5] D. R. Engler, D. Y. Chen, A. Chou, and B. Chelf, “Bugs as
deviant behavior: A general approach to inferring errors in
systems code,” in Proceedings of the 18th ACM Symposium on
Operating System Principles, Banff, Canada, Oct. 2001, pp. 57–
72. [Online]. Available: http://citeseer.nj.nec.com/458580.html

[6] Z. Li and Y. Zhou, “PR-Miner: automatically extracting
implicit programming rules and detecting violations in large
software code,” in Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing, Lisbon, Portugal, Sep. 2005, pp. 306–315.

[7] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static
specification inference using predicate mining,” in Proceedings
of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, San Diego, CA, USA,
Jun. 2007, pp. 123–134.

[8] I. Dillig, T. Dillig, and A. Aiken, “Static error detection using
semantic inconsistency inference,” in Proceedings of the 2007
ACM SIGPLAN conference on Programming Language Design
and Implementation, San Diego, CA, Jun. 2007, pp. 435–445.

