
Coccinelle Usage (version 1.1.0 )

February 24, 2021

1 Introduction

This document describes the options provided by Coccinelle. The options have an impact on various phases
of the semantic patch application process. These are:

1. Selecting and parsing the semantic patch.

2. Selecting and parsing the C code.

3. Application of the semantic patch to the C code.

4. Transformation.

5. Generation of the result.

One can either initiate the complete process from step 1, or to perform step 1 or step 2 individually.
Coccinelle has quite a lot of options. The most common usages are as follows, for a semantic match

foo.cocci, a C �le foo.c, and a directory foodir:

• spatch --parse-cocci foo.cocci: Check that the semantic patch is syntactically correct.

• spatch --parse-c foo.c: Check that the C �le is syntactically correct. The Coccinelle C parser tries
to recover during the parsing process, so if one function does not parse, it will start up again with the
next one. Thus, a parse error is often not a cause for concern, unless it occurs in a function that is
relevant to the semantic patch.

• spatch --sp-file foo.cocci foo.c: Apply the semantic patch foo.cocci to the �le foo.c and
print out any transformations as the changes between the original and transformed code, using the
program diff. --sp-file is optional in this and the following cases.

• spatch --sp-file foo.cocci foo.c --debug: The same as the previous case, but print out some
information about the matching process. --debug is an abbreviation for a whole set of debug settings.
If some speci�c features are wanted, they need to come after --debug, to override the --debug defaults.

• spatch --sp-file foo.cocci --dir foodir: Apply the semantic patch foo.cocci to all of the C
�les in the directory foodir.

• spatch --sp-file foo.cocci --dir foodir --include-headers: Apply the semantic patch foo.cocci
to all of the C �les and header �les one by one in the directory foodir.

The last four commands above produce a patch describing any changes. This patch can typically be
applied to the source code using the command patch -p1, like any other patch. Alternatively, the option
--in-place both produces the patch and transforms the code in place.

In the rest of this document, the options are annotated as follows:

1



• V: a basic option, that is most likely of interest to all users.

• _: an option that is frequently used, often for better understanding the e�ect of a semantic patch.

• &: an option that is likely to be rarely used, but whose e�ect is still comprehensible to a user.

• An option with no annotation is likely of interest only to developers.

2 Selecting and parsing the semantic patch

2.1 Standalone options

_ --parse-cocci 〈�le〉 Parse a semantic patch �le and print out some information about it.

_ --debug-parse-cocci Print some information about the de�nition of virtual rules and the bindings of
virtual identi�ers. This is particularly useful when using iteration, as it prints out this information for each
iteration.

2.2 The semantic patch

V --sp-�le 〈�le〉, -c 〈�le〉, --cocci-�le 〈�le〉 Specify the name of the �le containing the semantic patch.
The �le name should end in .cocci. All three options do the same thing. These options are optional. If
they are not used, the single �le whose name ends in .cocci is assumed to be the name of the �le containing
the semantic patch.

& --sp �semantic patch string� Specify a semantic match as a command-line argument. See the section
�Command-line semantic match� in the manual.

2.3 Isomorphisms

& --iso, --iso-�le Specify a �le containing isomorphisms to be used in place of the standard one. Normally
one should use the using construct within a semantic patch to specify isomorphisms to be used in addition

to the standard ones.

& --iso-limit 〈int〉 Limit the depth of application of isomorphisms to the speci�ed integer.

& --no-iso-limit Put no limit on the number of times that isomorphisms can be applied. This is the default.

& --disable-iso Disable a speci�c isomorphism from the command line. This option can be speci�ed multiple
times.

--track-iso Gather information about isomorphism usage.

--pro�le-iso Gather information about the time required for isomorphism expansion.

2.4 Display options

& --show-cocci Show the semantic patch that is being processed before expanding isomorphisms.

& --show-SP Show the semantic patch that is being processed after expanding isomorphisms.

2



& --show-ctl-text Show the representation of the semantic patch in CTL.

& --ctl-inline-let Sometimes let is used to name intermediate terms CTL representation. This option
causes the let-bound terms to be inlined at the point of their reference. This option implicitly sets --show-
ctl-text.

& --ctl-show-mcodekind Show transformation information within the CTL representation of the semantic
patch. This option implicitly sets --show-ctl-text.

& --show-ctl-tex Create a LaTeX �les showing the representation of the semantic patch in CTL.

3 Selecting and parsing the C �les

3.1 Standalone options

_ --parse-c 〈�le/dir〉 Parse a .c �le or all of the .c �les in a directory. This generates information about
any parse errors encountered.

_ --parse-h 〈�le/dir〉 Parse a .h �le or all of the .h �les in a directory. This generates information about
any parse errors encountered.

_ --parse-ch 〈�le/dir〉 Parse a .c or .h �le or all of the .c or .h �les in a directory. This generates
information about any parse errors encountered.

_ --control-�ow 〈�le〉, --control-�ow 〈�le〉:〈function〉 Print a control-�ow graph for all of the functions
in a �le or for a speci�c function in a �le. This requires dot (http://www.graphviz.org/) and gv.

& --control-�ow-to-�le 〈�le〉, --control-�ow-to-�le 〈�le〉:〈function〉 Like --control-�ow but just puts
the dot output in a �le in the current directory. For PATH/�le.c, this produces �le:xxx.dot for each (selected)
function xxx in PATH/�le.c.

& --type-c 〈�le〉 Parse a C �le and pretty-print a version including type information.

--tokens-c 〈�le〉 Prints the tokens in a C �le.

--parse-unparse 〈�le〉 Parse and then reconstruct a C �le.

--compare-c 〈�le〉 〈�le〉, --compare-c-hardcoded Compares one C �le to another, or compare the �le
tests/compare1.c to the �le tests/compare2.c.

--test-cfg-ifdef 〈�le〉 Do some special processing of #ifdef and display the resulting control-�ow graph.
This requires dot and gv.

--test-attributes 〈�le〉, --test-cpp 〈�le〉 Test the parsing of cpp code and attributes, respectively.

3



3.2 Selecting C �les

An argument that ends in .c is assumed to be a C �le to process. Normally, only one C �le or one directory
is speci�ed. If multiple C �les are speci�ed, they are treated in parallel, i.e., the �rst semantic patch rule
is applied to all functions in all �les, then the second semantic patch rule is applied to all functions in all
�les, etc. If a directory is speci�ed then no �les may be speci�ed and only the rightmost directory speci�ed
is used.

_ --include-headers This option causes header �les to be processed independently. This option only makes
sense if a directory is speci�ed using --dir.

_ --use-glimpse Use a glimpse index to select the �les to which a semantic patch may be relevant. This
option requires that a directory is speci�ed. The index may be created using the script coccinelle/scripts/
glimpseindex-cocci.sh. Glimpse is available at http://webglimpse.net/. In conjunction with the option
--patch-cocci this option prints the regular expression that will be passed to glimpse.

_ --use-idutils [〈�le〉] Use an id-utils index created using lid to select the �les to which a semantic patch
may be relevant. This option requires that a directory is speci�ed. The index may be created using the
script coccinelle/scripts/ idindex-cocci.sh. In conjunction with the option --patch-cocci this option
prints the regular expression that will be passed to glimpse.

The optional �le name option is the name of the �le in which to �nd the index. It has been reported that
the viewer seascope can be used to generate an appropriate index. If no �le name is speci�ed, the default is
.id-utils.index. If the �lename is a relative path name, that path is intereted relative to the target directory.
If the �lename is an absolute path name, beginning with /, it is used as is.

_ --use-coccigrep Use a version of grep implemented in Coccinelle to check that selected �les are relevant
to the semantic patch. This option is only relevant to the case of working on a complete directory, when
parallelism is requested (max and index options). Otherwise it is the default, except when multiple �les are
requested to be treated as a single unit. In that case grep is used.

Note that coccigrep or grep is used even if glimpse or id-utils is selected, to account for imprecision in
the index (glimpse at least does not distinguish between underline and space, leading to false positives).

& --selected-only Just show what �les will be selected for processing.

_ --dir Specify a directory containing C �les to process. A trailing / is permitted on the directory name
and has no impact on the result. By default, the include path will be set to the �include� subdirectory of this
directory. A di�erent include path can be speci�ed using the option -I. --dir only considers the rightmost
directory in the argument list. This behavior is convenient for creating a script that always works on a
single directory, but allows the user of the script to override the provided directory with another one. Spatch
collects the �les in the directory using find and does not follow symbolic links.

_ --ignore 〈string〉 Specify a �le name pre�x to ignore. This argument can be used multiple times. When
�le groups are used, the group is only rejected if the ignore speci�cations cause all �les in the group to be
ignored.

& --�le-groups Specify a �le that contains the list of �les to process. Files should be listed one per line.
Blank lines should be used to separate the �les into groups. All �les within a single group will be treated at
once. This is useful, for example, if one wants to process a complete driver, that consists of more than one
�le, and it is necessary to consider the interaction between code fragments that are present in the di�erent
�les. Single-line comments beginning with // can be used freely and are ignored.

4



It is also possible to specify range constraints in the �le groups �le. The syntax is �le: range1, range2, ...
A range is either a single line number n, a range of line numbers n-m, or a negated line number -n or range
of line numbers -n-m. A function is transformed if it overlaps with a speci�ed range and it does not overlap
with a negated range. An example is in demos/fg.cocci and demos/�le_groups.

--kbuild-info 〈�le〉 The speci�ed �le contains information about which sets of �les should be considered
in parallel.

--disable-worth-trying-opt Normally, a C �le is only processed if it contains some keywords that have
been determined to be essential for the semantic patch to match somewhere in the �le. This option disables
this optimization and tries the semantic patch on all �les.

--test 〈�le〉 A shortcut for running Coccinelle on the semantic patch ��le.cocci� and the C �le ��le.c�.
The result is put in the �le /tmp/file.res. If writing a �le in /tmp with a non-fresh name is a concern,
then do not use this option.

--testall A shortcut for running Coccinelle on all �les in a subdirectory tests such that there are all
of a .cocci �le, a .c �le, and a .res �le, where the .res contains the expected result. If the argu-
ment --expected-score-�le is provided, then that �le is used for the result. Otherwise, the result goes in
�tests/SCORE_expected.sexp�. Warning: It is intended that not all of the test cases provided with Coc-
cinelle actually pass.

& --test-spacing Like --testall, but ensures that the spacing is the same as in the .res �le. If the argument
--expected-spacing-score-�le is provided, then that �le is used for the result. Otherwise, the result goes in
�tests/SCORE_spacing_expected.sexp�.

--test-okfailed, --test-regression-okfailed Other options for keeping track of tests that have succeeded
and failed.

--compare-with-expected Compare the result of applying Coccinelle to �le.c to the �le �le.res repre-
senting the expected result.

--expected-extension Set the extension to be used on the �le containing the expected result when testing
with --compare-with-expected. The leading dot is optional. This implicitly sets the --compare-with-expected
�ag.

--expected-score-�le 〈�le〉 which score �le to compare with in the testall run

3.3 Parsing C �les

& --show-c Show the C code that is being processed.

& --parse-error-msg Show parsing errors in the C �le.

& --verbose-parsing Show parsing errors in the C �le, as well as information about attempts to accommo-
date such errors. This implicitly sets --parse-error-msg.

& --verbose-includes Show on standard error which �les are actually included.

5



& --parse-handler 〈�le〉 Loads the �le containing the OCaml code in charge of parse error reporting.
This function should have arguments 1) the line number containing the error, 2) the sequence of tokens,
the starting and ending line of the function containing the error, and array containing the lines of the �le
containing the error, and the pass of the parser on which the error occurs. This function should then be
passed to the function Parse_c.set_parse_error_function.

& --type-error-msg Show information about where the C type checker was not able to determine the type
of an expression.

& --int-bits 〈n〉, --long-bits 〈n〉 Provide integer size information. n is the number of bits in an unsigned
integer or unsigned long, respectively. If only the option --int-bits is used, unsigned longs will be assumed
to have twice as many bits as unsigned integers. If only the option -long-bits is used, unsigned ints will be
assumed to have half as many bits as unsigned integers. This information is only used in determining the
types of integer constants, according to the ANSI C standard (C89). If neither is provided, the type of an
integer constant is determined by the sequence of �u� and �l� annotations following the constant. If there is
none, the constant is assumed to be a signed integer. If there is only �u�, the constant is assumed to be an
unsigned integer, etc.

& --no-loops Drop back edges for loops. This may make a semantic patch/match run faster, at the cost of
not �nding matches that wrap around loops.

--use-cache Use preparsed versions of the C �les that are stored in a cache.

--cache-pre�x Specify the directory in which to store preparsed versions of the C �les. This sets --use-
cache

--cache-limit Specify the maximum number of preparsed C �les to store. The cache is cleared of all �les
with names ending in .ast-raw and .depend-raw on reaching this limit. Only e�ective if --cache-pre�x is
used as well. This is most useful when iteration is used to process a �le multiple times within a single run
of Coccinelle.

--debug-cpp, --debug-lexer, --debug-etdt, --debug-typedef Various options for debugging the C
parser.

--�lter-msg, --�lter-de�ne-error, --�lter-passed-level Various options for debugging the C parser.

--only-return-is-error-exit In matching �...� in a semantic patch or when forall is speci�ed, a rule
must match all control-�ow paths starting from a node matching the beginning of the rule. This is relaxed,
however, for error handling code. Normally, error handling code is considered to be a conditional with only
a then branch that ends in goto, break, continue, or return. If this option is set, then only a then branch
ending in a return is considered to be error handling code. Usually a better strategy is to use when strict

in the semantic patch, and then match explicitly the case where there is a conditional whose then branch
ends in a return.

Macros and other preprocessor code

_ --macro-�le 〈�le〉 Extra macro de�nitions to be taken into account when parsing the C �les. This uses
the provided macro de�nitions in addition to those in the default macro �le.

6



_ --macro-�le-builtins 〈�le〉 Builtin macro de�nitions to be taken into account when parsing the C �les.
This causes the macro de�nitions provided in the default macro �le to be ignored and the ones in the speci�ed
�le to be used instead.

& --ifdef-to-if,-no-ifdef-to-if The option --ifdef-to-if represents an #ifdef in the source code as a condi-
tional in the control-�ow graph when doing so represents valid code. -no-ifdef-to-if disables this feature.
--ifdef-to-if is the default.

& --noif0-passing Normally code under #if 0 is ignored. If this option is set then the code is considered,
just like the code under any other #ifdef.

& --de�ned s The string s is a comma-separated list of constants that should be considered to be de�ned,
with respect to uses of #ifdef and #ifndef in C code. No spaces should appear in s. Multiple --de�ned
arguments can be provided and the list of strings accumulates. For the provided strings any #elses of
#ifdefs are ignored and any #ifndefs are ignored, unless the argument --noif0-passing is also given, in
which case --de�ned has no e�ect. Note that occurrences of #define in the C code have no e�ect on the
list of de�ned constants.

This option now applies also to #if in which case the string has be exactly as it appears in the code,
minus any leading whitespace or tabs, and minus any comments. Not that there is currently no way to
provide information about the expressions used in #elif.

& --unde�ned s Analogous to --de�ned except that the strings represent constants that should be consid-
ered to be unde�ned.

--noadd-typedef-root This seems to reduce the scope of a typedef declaration found in the C code.

Include �les

_ --recursive-includes, --all-includes, --local-includes, --no-includes These options control which
include �les mentioned in a C �le are taken into account. --recursive-includes indicates that all included
�les mentioned in the .c �le(s) or any included �les will be processed. --all-includes indicates that all
included �les mentioned in the .c �le(s) will be processed. --local-includes indicates that only included �les
reachable by the speci�ed path from the directory of the .c �le. In this case, for non-local includes, speci�ed
with <>, Coccinelle will also search from the directories speci�ed with -I for .h �les with the same name as
the .c �le. --no-includes indicates that no included �les will be processed. If the semantic patch contains
type speci�cations on expression metavariables, then the default is --local-includes. Otherwise the default
is --no-includes. At most one of these options can be speci�ed.

& --no-include-cache Disable caching of parsed header �les. If --recursive-includes is used, using this
option will incur a large performance overhead.

_ -I 〈path〉 This option speci�es a directory in which to �nd non-local include �les. This option can be
used several times to specify multiple include paths.

_ --include-headers-for-types Header �les are parsed to collect type information, but are not involved in
the subsequent matching and transformation process.

& --include 〈�le〉 This option give the name of a �le to consider as being included in each processed �le.
The �le is added to the end of the �le's list of included �les. The complete path name should be given; the -I
options are not taken into account to �nd the �le. This option can be used several times to include multiple
�les.

7



& --relax-include-path This option when combined with --all-includes causes the search for local include
�les to consider the current directory, even if the include patch speci�es a subdirectory. This is really only
useful for testing, eg with the option --testall

& --c++ Make an extremely minimal e�ort to parse C++ code. Currently, this is limited to allowing
identi�ers to contain �::�, tilde, and template invocations. Consider testing your code �rst with spatch --
type-c to see if there are any type annotations in the code you are interested in processing. If not, then it
was probably not parsed.

& --ibm Make a e�ort to parse IBM C code. Currently decimal declarations are supported.

& --force-kr, --prevent-kr These options a�ect whether an identi�er alone in a parameter list can be
considered to be a possible K&R parameter or a typedef. The default is that as soon as a non-K&R
parameter is detected, ie a type alone or a type and an identi�er, then no identi�er is promoted to a K&R
parameter. If --force-kr is used, such promotion is still allowed to happen. If --prevent-kr is used, such
promotion never happens.

4 Application of the semantic patch to the C code

4.1 Feedback at the rule level during the application of the semantic patch

_ --show-bindings Show the environments with respect to which each rule is applied and the bindings that
result from each such application.

_ --show-dependencies Show the status (matched or unmatched) of the rules on which a given rule
depends. --show-dependencies implicitly sets --show-bindings, as the values of the dependencies are
environment-speci�c.

_ --show-trying Show the name of each program element to which each rule is applied.

_ --show-transinfo Show information about each transformation that is performed. The node numbers
that are referenced are the number of the nodes in the control-�ow graph, which can be seen using the option
--control-�ow (the initial control-�ow graph only) or the option --show-�ow (the control-�ow graph before
and after each rule application).

_ --show-misc Show some miscellaneous information.

& --show-�ow 〈�le〉, --show-�ow 〈�le〉:〈function〉 Show the control-�ow graph before and after the
application of each rule.

--show-before-�xed-�ow This is similar to --show-�ow, but shows a preliminary version of the control-
�ow graph.

4.2 Feedback at the CTL level during the application of the semantic patch

_ --verbose-engine Show a trace of the matching of atomic terms to C code.

& --verbose-ctl-engine Show a trace of the CTL matching process. This is unfortunately rather voluminous
and not so helpful for someone who is not familiar with CTL in general and the translation of SmPL into
CTL speci�cally. This option implicitly sets the option --show-ctl-text.

8



& --graphical-trace Create a pdf �le containing the control �ow graph annotated with the various nodes
matched during the CTL matching process. Unfortunately, except for the most simple examples, the
output is voluminous, and so the option is not really practical for most examples. This requires dot

(http://www.graphviz.org/) and pdftk.

& --gt-without-label The same as --graphical-trace, but the PDF �le does not contain the CTL code.

& --partial-match Report partial matches of the semantic patch on the C �le. This can be substantially
slower than normal matching.

& --verbose-match Report on when CTL matching is not applied to a function or other program unit
because it does not contain some required atomic pattern. This can be viewed as a simpler, more e�cient,
but less informative version of --partial-match.

4.3 Actions during the application of the semantic patch

_ -D rulename Run the patch considering that the virtual rule �rulename� is satis�ed. Virtual rules should
be declared at the beginning of the semantic patch in a comma separated list following the keyword virtual.
Other rules can depend on the satisfaction or non satifaction of these rules using the keyword depends on

in the usual way.

_ -D variable=value Run the patch considering that the virtual identi�er metavariable �variable� is bound
to �value�. Any identi�er metavariable can be designated as being virtual by giving it the rule name virtual.
An example is in demos/vm.cocci

& --allow-inconsistent-paths Normally, a term that is transformed should only be accessible from other
terms that are matched by the semantic patch. This option removes this constraint. Doing so, is unsafe,
however, because the properties that hold along the matched path might not hold at all along the unmatched
path.

& --disallow-nested-exps In an expression that contains repeated nested subterms, e.g. of the form
f(f(x)), a pattern can match a single expression in multiple ways, some nested inside others. This option
causes the matching process to stop immediately at the outermost match. Thus, in the example f(f(x)),
the possibility that the pattern f(E), with metavariable E, matches with E as x will not be considered.

& --no-safe-expressions normally, we check that an expression does not match something earlier in the
disjunction. But for large disjunctions, this can result in a very big CTL formula. So this option give the
user the option to say he doesn't want this feature, if that is the case.

--loop When there is �...� in the semantic patch, the CTL operator AU is used if the current function
does not contain a loop, and AW may be used if it does. This option causes AW always to be used.

& --ocaml-regexps Use the regular expressions provided by the OCaml Str library. This is the default if
the PCRE library is not available. Otherwise PCRE regular expressions are used by default.

--steps 〈int〉 This limits the number of steps performed by the CTL engine to the speci�ed number. This
option is unsafe as it might cause a rule to fail due to running out of steps rather than due to not matching.

--bench 〈int〉 This collects various information about the operations performed during the CTL matching
process.

9



& --reverse Inverts the semantic patch before applying it. A potential use case is backporting changes to
previous versions. If a semantic patch represents an API change, then the reverse undoes the API change.
Note that inverting a semantic patch is not always possible. In particular, the composition of a semantic
patch with its inverse is not guaranteed to be an empty patch.

5 Generation of the result

Normally, the only output is the di�erences between the original code and the transformed code obtained
using the program diff with the uni�ed format option. If stars are used in column 0 rather than - and +,
then the - lines in the output are the lines that matched the stars.

_ --keep-comments Don't remove comments adjacent to removed code.

_ --linux-spacing, --smpl-spacing Control the spacing within the code added by the semantic patch. The
option --linux-spacing causes spatch to follow the conventions of Linux, regardless of the spacing in the
semantic patch. This is the default. The option --smpl-spacing causes spatch to follow the spacing given
in the semantic patch, within individual lines.

_ --indent n The number of spaces to indent, if no other information is available. If this information is not
provided, then the default indentation is a tab. This option is thus particularly relevant to projects that
don't use tabs.

_ --max-width The maximum line width for generated code. 78 by default.

& -o 〈�le〉 This causes the transformed code to be placed in the �le file. The di�erence between the
original code and the transformed code is still printed to the standard output using diff with the uni�ed
format option. This option only makes sense when - and + are used.

& --in-place Modify the input �le to contain the transformed code. The di�erence between the original
code and the transformed code is still printed to the standard output using diff with the uni�ed format
option. By default, the input �le is overwritten when using this option, with no backup. The name of a
backup can be controlled using the --su�x command-line argument. This option only makes sense when -

and + are used.

& --su�x s The su�x s of the �le to use in making a backup of the original �le(s) with --in-place or in
making a new �le with --out-place. This su�x should include the leading �.�, if one is desired. This option
only has an e�ect when the option --in-place or --out-place is also used.

& --out-place Store the result of modifying the code in a .cocci-res �le. The su�x can be changed using
the --su�x command-line argument. The di�erence between the original code and the transformed code is
still printed to the standard output using diff with the uni�ed format option. This option only makes sense
when - and + are used.

& --no-show-di� Normally, the di�erence between the original and transformed code is printed on the
standard output. This option causes this not to be done.

& -U Set number of context lines to be provided by diff.

10



& --patch 〈path〉 The pre�x of the pathname of the directory or �le name that should dropped from
the diff line in the generated patch. This is useful if you want to apply a patch only to a subdirectory
of a source code tree but want to create a patch that can be applied at the root of the source code tree.
An example could be spatch --sp-file foo.cocci --dir /var/linuxes/linux-next/drivers --patch

/var/linuxes/linux-next. A trailing / is permitted on the directory name and has no impact on the result.

& --save-tmp-�les Coccinelle creates some temporary �les in /tmp that it deletes after use. This option
causes these �les to be saved.

--debug-unparsing Show some debugging information about the generation of the transformed code.
This has the side-e�ect of deleting the transformed code.

6 Other options

6.1 Version information

_ --version The version of Coccinelle is printed on the standard output. No other options are allowed.

_ --date The date of the current version of Coccinelle are printed on the standard output. No other options
are allowed.

6.2 Help

V --h, --shorthelp The most useful commands.

V --help, --help, --longhelp A complete listing of the available commands.

6.3 Controlling the execution of Coccinelle

_ --timeout 〈int〉 The maximum time in seconds for processing a single �le. A timeout of 0 is no timeout.

& --max 〈int〉 This option informs Coccinelle of the number of instances of Coccinelle that will be run
concurrently. This option requires --index. It is usually used with --dir.

& --index 〈int〉 This option informs Coccinelle of which of the concurrent instances is the current one. This
option requires --max.

& --mod-distrib When multiple instances of Coccinelle are run in parallel, normally the �rst instance
processes the �rst n �les, the second instance the second n �les, etc. With this option, the �les are distributed
among the instances in a round-robin fashion.

--debugger Option for running Coccinelle from within the OCaml debugger.

--pro�le Gather timing information about the main Coccinelle functions.

--pro�le-per-�le Like --pro�le, but generates information after processing each �le.

--disable-once Print various warning messages every time some condition occurs, rather than only once.

11



6.4 Parallelism

_ --jobs 〈int〉 Run the speci�ed number of jobs in parallel. Can be abbreviated as -j. This option is
not compatible with the use of a finalize rule in the semantic patch, as there is no shared memory and
the e�ect of a finalize rule is thus not likely to be useful. This option furthermore creates a temporary
directory in the directory from which spatch is executed that has the name of the semantic patch (without its
extension) and that contains stdout and stderr �les generated by the various processes. When the semantic
patch completes, the contents of these �les are printed to standard output and standard error, respectively,
and the directory is removed.

_ --tmp-dir 〈string〉 Specify the name of the temporary directory used to hold the results obtained on the
di�erent cores with the -j option.

--chunksize 〈int〉 The speci�ed number of �les are dispatched as a single unit of parallelism. This option is
only interesting with the options --all-includes or --recursive-includes, when combined with the option
--include-headers-for-types. In this case, parsed header �les are cached. It is only the �les that are
treated within a single chunk that can bene�t from this cache, due to the lack of shared memory in ocaml.

6.5 External analyses

--external-analysis-�le Loads in the contents of a database produced by some external analysis tool.
Each entry contains the analysis result of a particular source location. Currently, such a database is a .csv
�le providing integer bounds or an integer set for some subset of the source locations that references an
integer memory location. This database can be inspected with coccilib functions, e.g. to control the pattern
match process.

6.6 Miscellaneous

& --quiet Suppress most output. This is the default.

--pad, --xxx, --l1

12


