Introduction to Coccinelle

Julia Lawall (Inria/LIP6)

http://coccinelle.lip6.fr

September 17, 2014

Common programming problems

Programmers don't really understand how C works.
— lel & e2 does a bit-and with 0 or 1.

A simpler API function exists, but not everyone uses it.
— Mixing different functions for the same purpose is confusing.

A function may fail, but the call site doesn't check for that.
— A rare error case will cause an unexpected crash.

Etc.

Need for pervasive code changes.

Example: Bad bit-and

if (!'dma_cntrl & DMA_START_BIT) {
BCMLOG (BCMLOG_DBG, "Already Stopped\n");
return BC_STS_SUCCESS;

From drivers/staging/crystalhd/crystalhd_hw.c

Example: Inconsistent API usage
drivers/mtd/nand/r852.c:

if (!bounce) {
dev->phys_dma_addr =
pci_map_single(dev->pci_dev, (void *)buf, R852_DMA_LEN,
(do_read 7 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE));

if (pci_dma_mapping_error(dev->pci_dev, dev->phys_dma_addr))
bounce = 1;

drivers/mtd /nand/denali.c:

denali->buf.dma_buf =
dma_map_single (&dev->dev, denali->buf.buf, DENALI_BUF_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(&dev->dev, denali->buf.dma_buf))
pci_set_master(dev) ;

ret = pci_request_regions(dev, DENALI_NAND_NAME);

Example: Missing error check

alloc = kmalloc(sizeof *alloc, GFP_KERNEL);

INIT_LIST_HEAD(&intmem_allocations) ;

intmem_virtual = ioremap(MEM_INTMEM_START + RESERVED_SIZE,
MEM_INTMEM_SIZE - RESERVED_SIZE);

initiated = 1;

alloc->size = MEM_INTMEM_SIZE - RESERVED_SIZE;

From arch/cris/arch-v32/mm/intmem.c

Our goals

e Automatically find code containing bugs or defects, or
requiring collateral evolutions.

e Automatically fix bugs or defects, and perform collateral
evolutions.

e Provide a system that is accessible to software developers.

Requirements for automation

The ability to abstract over irrelevant information:

e if (!dma cntrl & DMA_START BIT) { ... }:
dma_cntrl is not important.

The ability to match scattered code fragments:

e kmalloc may be far from the first dereference.

The ability to transform code fragments:

e Replace pci_map_single by dma map_single, or vice versa.

Coccinelle

Program matching and transformation for unpreprocessed C code.

Fits with the existing habits of C programmers.

o C-like, patch-like notation

Semantic patch language (SmPL):
e Metavariables for abstracting over subterms.

e “..." for abstracting over code sequences.

e Patch-like notation (—/+) for expressing transformations.

The & problem

The problem: Combining a boolean (0/1) with a constant using &
is usually meaningless:

if (!dma_cntrl & DMA_START_BIT) {
BCMLOG (BCMLOG_DBG, "Already Stopped\n");
return BC_STS_SUCCESS;

The solution: Add parentheses.

Our goal: Do so automatically for any expression E and constant C.

A semantic patch for the !& problem

@0
expression E;
constant C;
©e

-E&C
+ I(E & C)

Two parts per rule:
e Metavariable declaration

e Transformation specification

A semantic patch can contain multiple rules.

Metavariable types

Surrounded by @@ QQ.

e expression, statement, type, constant, local idexpression
e A type from the source program

e iterator, declarer, iterator name, declarer name, typedef

Transformation specification

- in the leftmost column for something to remove

+ in the leftmost column for something to add

* in the leftmost column for something of interest
— Cannot be used with + and -.

Spaces, newlines irrelevant.

Exercise 1

1. Create a file exl.cocci containing the following:

©Q
expression E;
constant C;
©Q

- IE & C
+ I(E & C)

2. Run spatch: spatch --sp-file exl.cocci --dir
linux-3.2/drivers/staging/crystalhd

3. Did your semantic patch do everything it should have?

4. Did it do something it should not have?

Exercise 2
Some code contains a cast on the result of kmalloc. For example:

info->RegsBuf = (unsigned char *)
kmalloc(sizeof (info->ATARegs), GFP_KERNEL);

If the destination of the returned value has pointer type, this cast
is not needed.

1. Complete the following semantic patch to remove this
unnecessary cast.
0Q expression * e; expression argl, arg2; type T; @@
[fill it in]

2. Test your semantic patch on the code in

linux-3.2/drivers/isdn

3. Are you satisfied with the appearance of the results? If not,
try to improve it.

Practical issues

To check that your semantic patch is valid:

spatch —-parse-cocci mysp.cocci

To run your semantic patch:

spatch --sp-file mysp.cocci file.c

spatch --sp-file mysp.cocci --dir directory
If you don't need to include header files:

spatch --sp-file mysp.cocci --dir directory
--no-includes --include-headers

To understand why your semantic patch didn't work:

spatch --sp-file mysp.cocci file.c --debug

More practical issues

Put the interesting output in a file:

spatch ... > output.patch

Omit the uninteresting output:

spatch --very-quiet ...

The source code:

/usr/src/linux-source-3.2/scripts/coccinelle/

These slides:

http://pagesperso-systeme.lip6.fr/Julia.Lawall/
suse_tutorial.pdf

Inconsistent API usage

Do we need this function?

static inline dma_addr_t
pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size,
int direction)
{
return dma_map_single(hwdev == NULL ? NULL : &hwdev->dev, ptr,
size, (enum dma_data_direction)direction);

The use of pci map single

The code:

dev->phys_dma_addr =
pci_map_single(dev->pci_dev, (void *)buf, R852_DMA_LEN,
(do_read 7 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE));

would be more uniform as:

dev->phys_dma_addr =
dma_map_single (&dev->pci_dev->dev, (void *)buf, R852_DMA_LEN,
(do_read 7 DMA_FROM_DEVICE : DMA_TO_DEVICE));

Issues:
e Change function name.
e Add field access to the first argument.

e Rename the fourth argument.

Commit bOeb57ch

- rbi->dma_addr
+ rbi->dma_addr

+

pci map single: Example and definitions

&adapter->pdev->dev,

pci_map_single(adapter->pdev,

dma_map_single(

rbi->skb->data, rbi->len,

PCI_DMA_FROMDEVICE) ;

PCI constants

/* This
to the
#define
#define
#define
#define

defines the direction arg
DMA mapping routines. */

PCI_DMA_BIDIRECTIONAL

PCI_DMA_TODEVICE

PCI_DMA_FROMDEVICE

PCI_DMA_NONE

0
1
2
3

DMA constants

enum dma_data_direction {

DMA_BIDIRECTIONAL = O,
DMA_TO_DEVICE = 1,
DMA_FROM_DEVICE = 2,
DMA_NONE = 3,

pci map single: First attempt

Outline of a semantic patch, including the patch example:

0@

0@

- rbi->dma_addr

+ rbi->dma_addr

+ &adapter->pdev->dev,
rbi->skb->data, rbi->len,
PCI_DMA_FROMDEVICE) ;

pci_map_single(adapter->pdev,

dma_map_single(

pci map single: First attempt

Eliminate irrelevant code:

@@
@@

- pci_map_single(adapter->pdev,

+ dma_map_single(

+ &adapter->pdev->dev,
rbi->skb->data, rbi->len,
PCI_DMA_FROMDEVICE)

pcimap_single

Abstract over subterms:

@@
expression E1,E2,E3;
@@

- pci_map_single(E1,

+ dma_map_single(

+ &E1->dev,
E2, E3,
PCI_DMA_FROMDEVICE)

. First attempt

pcimap_single

Rename the fourth argument:

@@
expression E1,E2,E3;
@@

- pci_map_single(E1,
dma_map_single(
+ &E1->dev,

E2, E3,
- PCI_DMA_FROMDEVICE)
+ DMA_FROM_DEVICE)

+

. First attempt

pci map single: Second attempt
Need to consider all direction constants.

@@ expression E1,E2,E3; @@

- pci_map_single(El,

+ dma_map_single (&E1->dev,
E2, E3,

- PCI_DMA_FROMDEVICE)

+ DMA_FROM_DEVICE)

@@ expression E1,E2,E3; @@

- pci_map_single(E1l,

+ dma_map_single (&E1->dev,
E2, E3,

- PCI_DMA_TODEVICE)

+ DMA_TO_DEVICE)

Etc. Four rules in all.

pci map_single: Third attempt

Avoid code duplication: Use a disjunction.

Q@ expression E1,E2,E3; @@
- pci_map_single(El,
+ dma_map_single (&E1->dev,

(

+

+

+

-+

E2, E3,

PCI_DMA_BIDIRECTIONAL
DMA_BIDIRECTIONAL

PCI_DMA_TODEVICE
DMA_TO_DEVICE

PCI_DMA_FROMDEVICE
DMA_FROM_DEVICE

PCI_DMA_NONE
DMA_NONE_DEVICE

pci map_single: Fourth attempt

Q@ expression E1,E2,E3,E4; ©Q

- pci_map_single(E1l,

+ dma_map_single (&E1->dev,
E2, E3, E4)

@@ expression E1,E2,E3; @@
dma_map_single(E1, E2, E3,
(

PCI_DMA_BIDIRECTIONAL
DMA_BIDIRECTIONAL

+

PCI_DMA_TODEVICE
DMA_TO_DEVICE

+

PCI_DMA_FROMDEVICE
DMA_FROM_DEVICE

— 4

PCI_DMA_NONE
DMA_NONE_DEVICE

— +

Exercise 3

. Implement some version of the semantic patch for converting
calls to pci_map_single to calls to dma_map_single.

. Test your implementation on the directory
linux-3.2/drivers/net/ethernet.

. Implement both the third version and the fourth version.
Compare the results.

. Other PCI functions replicate DMA behavior, e.g.,
pci_unmap_single. For example, commit bOeb57cb contains:
- pci_unmap_single(pdev, tbi->dma_addr, tbi->len,

+ dma_unmap_single(&pdev—>dev, tbi->dma_addr, tbi->len,
PCI_DMA_TODEVICE) ;

Extend your semantic patch to implement this transformation.
Try to minimize the number of rules.

Getter and setter functions

Some functions from include/linux/ide.h:

static inline void *
ide_get_hwifdata (ide_hwif_t * hwif)
{

return hwif->hwif_data;

static inline void
ide_set_hwifdata (ide_hwif_t * hwif, void *data)
{

hwif->hwif_data = data;

Goal: Replace uses of hwif->hwif_data by calls to these function.

Getter and setter functions

©e

expression hwif;

©e

- hwif->hwif_data

+ ide_get_hwifdata(hwif)

@@

expression hwif, data;

@@

- hwif->hwif_data = data

+ ide_set_hwifdata(hwif, data)

. First attempt

Problems

0@ expression hwif; @@
- hwif->hwif_data
+ ide_get_hwifdata(hwif)

The rule applies to

unsigned long base = (unsigned long)hwif->hwif_data;
but also to

hwif->hwif_data = NULL;

The rule transforms all hwif_data field references.

Second attempt: Rule order

@@

expression hwif, data;

@@

- hwif->hwif_data = data

+ ide_set_hwifdata(hwif, data)

©e

expression hwif;

©e

- hwif->hwif_data

+ ide_get_hwifdata(hwif)

Applies to 9 code sites, in 2 files.

Third attempt: Metavariable type constraints

0@ ide_hwif_t *hwif; expression data; @@
- hwif->hwif_data = data
+ ide_set_hwifdata(hwif, data)

0@ ide_hwif_t xhwif; QO
- hwif->hwif_data
+ ide_get_hwifdata(hwif)

Can optionally add typedef ide hwif_t; in the first rule.
e Typedef is needed when the type appears only in a cast.

e Typedef appears only once, where earliest needed.

Exercise 4

. Implement all three variants of the semantic patch for
introducing the ide_get_hwifdata and ide_set_hwifdata
getter and setter functions.

. Test each variant on the directory 1inux-3.2/drivers/ide,
and compare the results.

. Reimplement each variant using a disjunction.

. Compare the results of the disjunction variants to the original
implementations.

Exercise 5

In the case of pci map_single and dma map_single, we could
also prefer to convert PCl occurrences of dma map_single to calls
to pci map single (i.e., the reverse transformation).

1. Implement a semantic patch to do this transformation.

2. Test your semantic patch on the directory
linux-3.2/drivers/net/ethernet.

3. Given the definition of pci_map_single in
include/asm-generic/pci-dma-compat.h, why should the
file ethernet/cadence/macb.c not be transformed?

4. Check that your semantic patch makes no modification in this
file.

Summary

SmPL features seen so far:

e Metavariables for abstracting over arbitrary terms.

Metavariables restricted to particular types.

e Disjunctions.

Multiple rules.

Rule ordering.

Coccinelle Features

Julia Lawall (Inria/LIP6)

http://coccinelle.lip6.fr

September 17, 2014

Isomorphisms.

Dots.
Positions.

Python.

Coccinelle features

Isomorphisms

Issue:

e Coccinelle matches code exactly as it appears.

e x == NULL does not match !x.

Goal:

e Transparently treat similar code patterns in a similar way.

Example: DIV_ROUND _UP

The following code is fairly hard to understand:

return (time_ns * 1000 + tick_ps - 1) / tick_ps;
kernel.h provides the following macro:

#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))

This is used, but not everywhere it could be.

We can write a semantic patch to introduce new uses.

DIV_ROUND_UP semantic patch

One option:
00 expression n,d; @@

- (@ + @ -1/ @)
+ DIV_ROUND_UP(n,d)

Another option:

00 expression n,d; @@

- (+d-1) /d
+ DIV_ROUND_UP(n,d)

Problem: How many parentheses to put, to capture all
occurrences?

Isomorphisms

An isomorphism relates code patterns that are considered to be
similar

Expression
@ drop_cast Q@ expression E; pure type T; @Q

(T)E => E

Expression
@ paren Q@ expression E; QO

(E) => E

Expression
@ is_null @ expression X; Q@

== NULL <=> NULL == X => X

Isomorphisms, contd.
Isomorphisms are handled by rewriting.

() + (@ - 1)/ @)

becomes:

(
(@ + @ - 1) / @)
|
(@) + @ -1 /d
|
(((m) +d-1) / @)
|

((n) +d-1)/ d

|

(n+ (@ -1) / @)
|

(a+ (@ -1/ 4d

|
(a+d-1)/ @M
|
(n+d-1) /4
|
etc.
)

Results

@@
expression n,d;
@@

- (((n) + @ - 1)/ @)
+ DIV_ROUND_UP(n,d)

Changes 281 occurrences in Linux 3.2.

Practical issues
Default isomorphisms are defined in standard.iso

To use a different set of default isomorphisms:

spatch --sp-file mysp.cocci --dir linux-x.y.z --iso-file empty.iso

To drop specific isomorpshisms:

Odisable paren@ expression n,d; ©Q
- () + () - 1)/ @
+ DIV_ROUND_UP(n,d)

To add rule-specific isomorphisms:

Qusing "myparen.iso" disable paren®@
expression n,d;

Q@

- (@ + @ -1 /7 @

+ DIV_ROUND_UP(n,d)

Exercise 6

Some Linux code combines an assignment with a test, as
illustrated by the following:

if (! (p = kmalloc(sz, GFP_KERNEL)))
break;

The following semantic patch moves the assignment out of the
conditional:

00 identifier el; expression e2; statement S1, S2; @@
+ el = e2;
if (
- (el = e2)
+ el
== NULL) S1 else S2

1. Test this semantic patch on linux-3.2/sound/pci/au88x0

2. How were isomorphisms used in these matches?

Exercise 7

Run
spatch --parse-cocci sp.cocci
For some semantic patch sp.cocci that you have developed.

Explain the result.

Dots

Issue:

e Sometimes it is necessary to search for multiple related code
fragments.

Goals:

e Specify patterns consisting of fragments of code separated by
arbitrary execution paths.

e Specify constraints on the contents of those execution paths.

Example: Inadequate error checking of kmalloc

kmalloc returns NULL on insufficient memory.

Good code:

block = kmalloc(WL12XX_HW_BLOCK_SIZE, GFP_KERNEL);
if (!block)
return;

Bad code:

g = kmalloc (sizeof (*g), GFP_KERNEL);
g->next = chains[r_sym] .next;

More bad code

alloc = kmalloc(sizeof *alloc, GFP_KERNEL);

INIT_LIST_HEAD(&intmem_allocations);

intmem_virtual = ioremap(MEM_INTMEM_START + RESERVED_SIZE,
MEM_INTMEM_SIZE - RESERVED_SIZE);

initiated = 1;

alloc->size = MEM_INTMEM_SIZE - RESERVED_SIZE;

The kmalloc and the dereference are not necessarily contiguous.

Using dots

Start with a typical example of code

alloc = kmalloc(sizeof *alloc, GFP_KERNEL);

INIT_LIST_HEAD(&intmem_allocations);

intmem_virtual = ioremap(MEM_INTMEM_START + RESERVED_SIZE,
MEM_INTMEM_SIZE - RESERVED_SIZE);

initiated = 1;

alloc->size MEM_INTMEM_SIZE - RESERVED_SIZE;

Using dots

Highlight what is wanted

* alloc = kmalloc(sizeof *alloc, GFP_KERNEL);
INIT_LIST_HEAD(&intmem_allocations);
intmem_virtual = ioremap(MEM_INTMEM_START + RESERVED_SIZE,
MEM_INTMEM_SIZE - RESERVED_SIZE);
initiated = 1;

* alloc->size MEM_INTMEM_SIZE - RESERVED_SIZE;

Using dots

Replace the irrelevant statements by . ..

* alloc = kmalloc(sizeof *alloc, GFP_KERNEL);

* alloc—>size = MEM_INTMEM_SIZE - RESERVED_SIZE;

Using dots

Abstract over irrelevant subterms.

e May use

00 expression e; identifier f; @Q
* e = kmalloc(...);

* e—->f

Using dots

Check properties of the matched statement sequence

00 expression e; identifier f; @Q
* e = kmalloc(...);
. when != e == NULL
when != e !'= NULL

* e—->f

Using dots

Sanity check

00 expression e, el; identifier f; ©Q
* e = kmalloc(...);
. when != e == NULL
when != e != NULL
when != e = el

* e—->f

Results: 18 kmallocs in 12 files

Real bug: linux-3.2/arch/cris/arch-v32/mm /intmem.c

- alloc = kmalloc(sizeof *alloc, GFP_KERNEL);
INIT_LIST_HEAD(&intmem_allocations) ;
intmem_virtual = ioremap(MEM_INTMEM_START + RESERVED_SIZE,
MEM_INTMEM_SIZE - RESERVED_SIZE);
initiated = 1;
- alloc->size = MEM_INTMEM_SIZE - RESERVED_SIZE;

Results: 18 kmallocs in 12 files

Real bug: linux-3.2/arch/cris/arch-v32/mm /intmem.c

- alloc = kmalloc(sizeof *alloc, GFP_KERNEL);
INIT_LIST_HEAD(&intmem_allocations) ;
intmem_virtual = ioremap(MEM_INTMEM_START + RESERVED_SIZE,
MEM_INTMEM_SIZE - RESERVED_SIZE);
initiated = 1;
- alloc->size = MEM_INTMEM_SIZE - RESERVED_SIZE;

False positive! linux-3.2/net/ipv4/syncookies.c

- ireq->opt = kmalloc(opt_size, GFP_ATOMIC);
- if (ireq->opt != NULL && ip_options_echo(&ireq->opt->opt, skb)) {
kfree(ireq->opt);
ireq->opt = NULL;
}

False positives

ireq->opt != NULL && ip-options_echo(&ireq->opt->opt, skb)

matches complete statements.

e ireq->opt != NULL is not seen as being before
&ireq->opt—>opt.

Solution: stop at NULL tests or bad dereference (disjunction).
e e == NULL: OK
e e != NULL: OK
e e—>f: Bug

Revised version

00 expression e,el; identifier f; QG
e = kmalloc(...);

. when != e = el
(
== NULL ||
|
e != NULL && ...
|
*x e—>f
)

Shortest path property:

e “..." matches everything except what is on either side.

Matches 11 files, eliminating the false positive.

Exercise 8

The following code allocates a region of memory and then clears it:

state = kmalloc(sizeof (struct drxd_state), GFP_KERNEL);
if (!state)

return NULL;
memset (state, 0, sizeof (*state));

The function kzalloc does both, i.e., we could write:

state = kzalloc(sizeof (struct drxd_state), GFP_KERNEL);
if (!state)
return NULL;

1. Write a semantic patch to make this transformation.

2. Test your semantic patch on
linux-3.2/drivers/net/wireless.

3. Are there any files where your semantic patch should not
transform the code, but it does?

Exercise 9

One of the results for the kmalloc with no NULL test example is
the following (linux-3.2/drivers/macintosh /via-pmu.c):

- pp = kmalloc(sizeof (struct pmu_private), GFP_KERNEL) ;
if (pp == 0)
return -ENOMEM;
- pp—>rb_get = pp->rb_put = 0;

The code will not crash, but it is not as nice as it could be. Write
a semantic patch to replace such bad uses of 0 by NULL.

Hints:

e A metavariable of type “expression *" matches any pointer
typed expression.

e This exercise has nothing to do with dots.

Exercise 10

Clearing a region of memory using memset before the region of
memory goes out of scope is useful to ensure that information
cannot leak to the next user of that memory. Nevertheless, gcc
may consider that the call to memset is useless and remove it. A
new function memset_explicit has been introduced to get around
this problem. The goal of this exercise is to introduce uses of this
function.

1. Basically, we are concerned with a local variable declaring
memory that is subsequently passed into the first argument of
memset. Write one or more rules that express the possible
cases. Does your rule match everything it should? Does it
match anything it should not?

Exercise 10, contd.

An example of the desired transformation is as follows:

static int sha224_ssse3_final(struct shash_desc *desc, u8 *hash)

{
u8 D[SHA256_DIGEST_SIZE];

sha256_ssse3_final(desc, D);
memcpy (hash, D, SHA224_DIGEST_SIZE);
- memset (D, O, SHA256_DIGEST_SIZE);
+ memset_explicit(D, 0, SHA256_DIGEST_SIZE);

return O;

}

Exercise 10, contd.

2 Normally, ... matches the shortest path from what comes
before the ... to what comes after. Furthermore, when
transformation is performed, all paths must satisfy the
pattern, but not those concerned with error-handling code
(non strictness). Consider where the following can be placed
in your semantic patch to improve the result.

when any

when exists
when strict
when = x

This exercise was inspired by the work of Daniel Borkmann

Positions and Python

00 expression e,el; identifier f; QG
e = kmalloc(...);

. when != e = el

(

e == NULL ||
|

e != NULL && ...
|
* e—>f
)

Output reported as a diff:
e Useful in emacs (diff-mode).

e Perhaps less useful in other contexts.

Why is there no * on kmalloc?

Positions and Python
Goal:

e Collect positions of some matched elements.

e Print a helpful error message.

ere @script:python@
expression e,el; pl << r.pi;
identifier f; P2 << r.p2;
position pl, p2; ©e
©e 11 = p1[0].line
e = kmalloc@pl(...); 12 = p2[0].1line
. when != e = el print "kmalloc on line %s not tested
(before reference on line %s" %
e == NULL || ... (11,12)

e != NULL && ...

e@p2->f
)

A refinement

Exists:
e Require only a single matching execution path.
e Default for *.

Or exists@ @script:python@
expression e,el; pl << r.pi;
identifier f; p2 << r.p2;
position pl, p2; @@
e 11 = p1[0].1line
e = kmalloc@pl(...); 12 = p2[0].1line
. when != e = el print "kmalloc on line %s not tested
(before reference on line %s" %
e == NULL || ... (11,12)

e != NULL && ...

e@p2->f
)

Exercise 11

Rewrite a semantic patch that you have implemented previously, so
that it prints the line numbers on which a change is needed, rather
than making the change.

Useful terms:
e p[0].file is the name of the file represented by p.
e p[0].line is the number, as a string, of the line represented
by p.
e pis an array, because there can be many matches.

Exercise 12

1. The following semantic patch rule matches an initialization of
a platform driver structure:

Oplatform@
identifier p, probefn, removefn;
ee
struct platform_driver p = {
.probe = probefn,
.remove = removefn,
};
Extend this semantic patch to find the name of the first
parameter of the probe function and of the remove function,
and to print the function names and the corresponding

parameter names using python.

2. Some platform driver probe functions use the function
kzalloc to allocate memory. Adjust the previous semantic
patch to find and print the positions of these calls.

Exercise 12, contd.

3. Kzallocd memory must be freed using kfree, but this is
easy to forget. The function devm_kzalloc is like kzalloc
but the driver library manages the freeing. Adjust the previous
semantic patch to replace calls to kzalloc by calls to
devm_kzalloc.

4. The code produced by the previous rule does not compile,
because devm_kzalloc requires a device argument. This can
be constructed from the first parameter of a platform driver
probe function. If this parameter is named x, then the
corresponding device value is &x->dev. Adjust the previous
semantic patch to add this as the first argument of each
generated call to devm kzalloc.

Exercise 12, contd.

5. The code resulting from the previous semantic patch has
double frees, because devm_kzalloc causes an implicit free,
and the code still contains calls to kfree. A more complete,
but not perfect, solution to this problem is found at
http://kernelnewbies.org/Julialawall round8. Study
and explain the semantic patch code.

6. Test the devm_kzalloc semantic patch found at
http://kernelnewbies.org/Julialawall round8, e.g.,
on drivers/net/ethernet, and explain and try to resolve any
deficiencies.

Summary

Isomorphisms, for simplifying, eg NULL tests, parentheses,
casts.

Dots, for matching a sequence of statements, arguments, etc.
When, for restricting the contents of sequences.
Positions, for remembering the exact position of some code.

Python, for printing error messages, managing hashtables, etc.

