
Hunting bugs with Coccinelle

Department of Computer Science, University of Copenhagen

Henrik Stuart
8th August 2008

Abstract

Software bugs are an ever increasing liability as we become more dependent
on software. While many solutions have been produced to find bugs, there is still
ample room for improvement. In this thesis we have used the source-to-source
transformation engine for the C programming language, Coccinelle, by extend-
ing it with reporting facilities and static analysis prototyping capabilities using
Python that integrate with the OCaml code of Coccinelle. Using the prototyping
capabilities, we have developed patterns for matching stack-based buffer over-
flows and use-after-free bugs. We have furthermore developed an alternative
control flow graph representation for Coccinelle in an effort to decrease the
number of false positives when we search for use-after-free bugs, and we have
implemented a generalised constant propagation algorithm to estimate value
ranges for program variables. We have run our bug patterns on several code-bases
ranging from 30,000 lines of source code up to over 5.5 million lines of source
code and found bugs in all of the code-bases. While our patterns only provide a
first step towards making Coccinelle into a general-purpose bug hunting tool,
they have successfully shown that Coccinelle has the potential to compete with
many of the currently available bug finding tools.

Resumé

I takt med at vi bliver mere afhængige af software jo større et problem bliver
programfejl. Selvom der er lavet mange løsninger til at finde programfejl, så er
der stadig rig mulighed for at lave forbedringer. Vi har benyttet Coccinelle, et
kildeteksttransformeringsprogram til C-programmeringssproget, og udvidet det
med funktionalitet til at rapportere fejl og med funktionalitet til at prototype
statiske analyser ved at integrere Python med den eksisterende OCaml-kode
som Coccinelle er skrevet i. Ved at bruge prototype-funktionaliteterne har vi
udviklet søgemønstre til at finde stak-baserede buffer-overløb og use-after-free-
fejl. Vi har ydermere udviklet en alternativ repræsentation af control flow graphs i
Coccinelle for at begrænse antallet af falske positiver ved søgning efter use-after-
free fejl, og vi har implementeret generalised constant propagation til at beregne
de mulige værdier en program-variabel kan have på kørselstidspunktet. Vi har
afviklet vores søgemønstre på kildetekster til flere programmer som indeholder
fra 30.000 linjers kildetekst til over 5,5 millioner linjers kildetekst, og vi har fundet
fejl i samtlige programmer. Selvom vores søgemønstre kun er det første skridt
til at bruge Coccinelle som et generelt anvendeligt fejlfindingsværktøj, så har de
vist, at Coccinelle har potentiale til at konkurrere på lige fod med mange af de
fejlfindingsværktøjer som er tilgængelige i dag.

To Ida who always brings the sunshine

Contents

1 Introduction 1
1.1 Coccinelle . 1
1.2 Program analysis . 10
1.3 Outline of the thesis . 16

2 Bug taxonomy 19
2.1 Previous work . 20
2.2 Extending the CommonWeakness Enumeration taxonomy 22

3 Extending Coccinelle 29
3.1 Scripting Coccinelle . 29
3.2 Data flow analysis . 33
3.3 Avoiding false positives in use-after-free 38
3.4 Functions provided for Python by Coccinelle 43
3.5 Completing the taxonomy elements . 43

4 Results 51
4.1 Investigating the results of our extensions 51
4.2 Linux 2.6 . 58
4.3 Other code-bases . 69
4.4 Summary . 70

5 Comparing Coccinelle to other bug finders 73
5.1 Coverity and Linux 2.6 . 75
5.2 Splint, Valgrind and the other code-bases 78
5.3 Summary . 87

6 Conclusion 89
6.1 Future work . 90

Bibliography 91

Acknowledgements 99

Colophon 101

v

List of Figures

1.1 The workings of Coccinelle . 3
1.2 Constant propagation lattice . 14

2.1 Taxonomy element structure . 23

3.1 Control flow graph for Listing 3.7 . 39
3.2 Coccinelle’s control flow graph for a for loop 42
3.3 Expanded control flow graph for a for loop 42
3.4 Taxonomy element structure . 45

4.1 Stack-based buffer overflow for Listing 4.1 52
4.2 Use-after-free results for Listing 4.9 and 4.11 56
4.3 Use-after-free results for Listing 4.10 . 57
4.4 Use-after-free results for Listing 4.13 . 59

vi

List of Tables

3.1 Example generalised constant propagation flow for Figure 3.1 with m = 2 . 40

4.1 Success rates for finding buffer overflows in Linux 2.6 59
4.2 Success rates for finding use-after-free bugs in Linux 2.6 64
4.3 Reasons for false positives for use-after-free bugs in Linux 2.6 64
4.4 Success rates for finding buffer overflows in tbaMUD 70

5.1 Buffer overflow bugs from the Linux 2.6 kernel 76
5.2 Use-after-free bugs from the Linux 2.6 kernel 79
5.3 Success rates for finding buffer overflows in tbaMUD with Splint 81
5.4 Success rates for finding use-after-free bugs in tbaMUD with Splint 81
5.5 Success rates for finding use-after-free bugs in Icecast with Splint 86

vii

List of Listings

1.1 C functions calling f() . 3
1.2 Diff file for replacing uses of f with uses of g in Listing 1.1 4
1.3 Simple SmPL patch . 5
1.4 SmPL patch using expression meta-variable 5
1.5 Contextual SmPL patch . 5
1.6 Replacing a single function argument using SmPL 5
1.7 Using positional meta-variables in a semantic patch 7
1.8 SmPL construct for matching zero or more matches 7
1.9 SmPL construct for matching one or more matches 7
1.10 SmPL construct for selecting different matches 7
1.11 SmPL construct for constraining path abstraction matches 8
1.12 SmPL example isomorphism rule . 9
1.13 Example isomorphism for matching variable redefinitions 9
1.14 C function with an error path . 9
1.15 Using existential quantification in a SmPL patch 9
1.16 Adding isomorphism rules to a SmPL rule 10
1.17 Collateral evolution to proc_info_func . 11
1.18 Simple C program . 13
1.19 Sample buffer allocation function . 16
1.20 Sample buffer allocation function, checked 16
1.21 Illustration of the shortcomings of dynamic analysis 17

2.1 Generalised pattern from Bisbey and Hollingworth [1978] 21
2.2 Example of stack-based buffer overflow . 23
2.3 Example array construction in ISO/IEC 9899:1990 24
2.4 Stack-based buffer definition and usage match 24
2.5 Example of allocation-function based buffer overflow 25
2.6 Allocation-function based buffer allocation and usage match 25
2.7 Use-after-free bug in linux-2.4.1/drivers/usb/dc2xx.c 27
2.8 Use after free match . 27
2.9 False positive for use after free match . 27
2.10 False negative for double free match . 28

3.1 SmPL scripting rule structure . 31
3.2 SmPL scripting rule example for reporting a program’s identifiers 31
3.3 Output class definition . 31

viii

List of Listings ix

3.4 Example SmPL filtering code using Python 32
3.5 Python class for representing expression meta-variables 33
3.6 Python class for representing position meta-variables 34
3.7 Simple loop . 39
3.8 SmPL patch using generalised constant propagation information 41
3.9 Trying to avoid matching the mplayer false positive 41
3.10 SmPL patch for matching and reporting stack-based buffer overflows . . . 44
3.11 SmPL patch for matching and reporting heap-based buffer overflows . . . 46
3.12 Finding all use-after-free locations . 47
3.13 Template for finding faulty use-after-free locations 49
3.14 Expanded example template for matching use-after-free bugs 50

4.1 Simple stack-based buffer overflow . 52
4.2 Simple stack-based buffer overflow with global constant size 52
4.3 Buffer overflow in global buffer . 53
4.4 Global buffer semantic match . 53
4.5 Buffer overflow in global array with initialiser 54
4.6 Buffer overflow in array defined in a struct 55
4.7 Struct-defined buffer semantic match . 56
4.8 Buffer overflow in array defined in a nested struct 57
4.9 Simple use-after-free error with structs . 57
4.10 Use-after-free in a loop . 57
4.11 Simple use-after-free error when freeing list member 59
4.12 Interprocedural use-after-free . 59
4.13 Infeasible path use-after-free false positive 60
4.14 arch/alpha/boot/main.c buffer overflow bug in Linux 2.6 61
4.15 False positive when copying from user-space to kernel-space 61
4.16 False positive when using enumerations . 62
4.17 False positive when using bitwise operators 63
4.18 Use-after-free bug due to member access after free 64
4.19 Use-after-free bug due to writing to a variable after free 65
4.20 Use-after-free false positive due to interprocedural flow 67
4.21 Use-after-free false positive due to lack of path pruning 68
4.22 Use-after-free false positive due to non-expanded macro 68
4.23 Buffer overflow in util/shopconv.c . 70
4.24 Known buffer overflow in genqst.c . 71
4.25 Known use-after-free bug in fserve.c . 71

5.1 Buffer overflow in the Linux-2.6 kernel (commit ID 8ea371fb6df5a6e8-

056265e0089fd578e87797fc) . 77
5.2 Buffer overflow in the Linux-2.6 kernel (commit ID d6d21dfdd305bf94-

300df13ff472141d3411ea17) . 77
5.3 Buffer overflow in the Linux-2.6 kernel (commit ID 80c6e3c0b5eb855b-

69270658318f5ccf04d7b1ff) . 78

util/shopconv.c
genqst.c
fserve.c

x List of Listings

5.4 Use-after-free bug from the Linux-2.6 kernel (commit ID 8dc22d2b642f-

8a6f14ef8878777a05311e5d1d7e) . 79
5.5 Splint error report . 81
5.6 Splint switches for analysing tbaMUD . 81
5.7 Example of a buffer overflow in tbaMUD discovered by Splint 82
5.8 Use-after-free bug in tbaMUD discovered by Splint 83
5.9 Buffer overflow false positive as reported by Splint 83
5.10 Use-after-free false positive as reported by Splint 83
5.11 Use-after-free false positive as reported by Splint 85
5.12 Use-after-free false positive as reported by Splint 85
5.13 Splint switches for analysing Icecast . 85
5.14 Valgrind detection of the known use-after-free bug in Icecast 88

Chapter 1

Introduction

Software has permeated our lives to a degree where we are increasingly dependent on
it. This dependency comes with a cost that we pay when software malfunctions. For
end users the cost may be nothing more than a slight nuisance when their media player
crashes during their favourite television show, but for a company, the halted flow of
traffic to their website can mean millions of euros in losses, and for critical software,
the malfunction of electronically controlled car brakes could result in the ultimate cost,
the loss of human life.

Despite the fact that there has been an increased focus on testing with various unit
test tools, and the existence of several analysis tools that can find possible bugs in soft-
ware, there is still an overwhelming amount of reported vulnerabilities in commercial
and open source software alike, ranging from benign issues that the local user has to
initiate, to vulnerabilities where malicious attackers can remotely crash a system or
assume complete control of it.

One of the contributing factors to the infrequent use of analysis tools is that they
are often hard to use and require a serious investment of time into understanding the
underlying theory of their functionality. Furthermore, they may often only be suitable
for a single purpose and not allow the user to dictate or extend its functionality.

In this thesis we will use the source-to-source transformation tool Coccinelle to
find faults in software by using its existing source-code matching functionality and by
extending it with static analysis features.

The following sections will describe Coccinelle and give a brief overview of program
analysis.

1.1 Coccinelle

Maintenance frequently touches many components in a software program, and in some
cases changes in a core component may require changes in all the program parts that
use this component—so-called evolution and collateral evolution. Coccinelle has been
born out of a study of collateral evolutions in the Linux kernel [Padioleau et al., 2006c]
where changes to core systems need to propagate correctly not only to the thousands
of drivers in the Linux kernel source code tree, but also to all the proprietary drivers.
Propagating such changes is an error-prone process where most of the know-how is
left in the hands of the kernel maintainer. To date this has mostly been done manually,
leaving many subtle bugs in driver code for many subsequent versions of the Linux
kernel [Padioleau et al., 2006c].

1

2 Introduction

Coccinelle consists of three parts. Themost visible part of Coccinelle is the domain-
specific language SmPL (Semantic Patch Language) that allows one to express evolu-
tions using a syntax that is familiar to Linux kernel developers—SmPL programs, or
rather semantic patches, are subsequently compiled to a formula expressed in compu-
tational tree logic with existentially quantified program variables, CTL-VW [Padioleau
et al., 2006a, Brunel et al., 2008]. As part of SmPL there is also an isomorphism
mechanism that allows the user to express what C constructs should be considered
equivalent, e.g. x == NULL is equivalent to NULL == x. The second, and also very im-
portant part of Coccinelle, is the custom C parser that parses C programs without
expanding preprocessor macros—this is done in an effort to keep the familiarity of the
diff and patch workflow for kernel developers so that evolutions can also be performed
on preprocessor macros. When the C source code is parsed, the C parser generates
both a modifiable abstract syntax tree that the transformations are performed on, and
a control flow graph.1 Finally, the last part is the behind-the-scenes model checker
that matches the generated CTL-VW formula against the control flow graph. Based on
the matches the model checker finds, the transformations are applied to the abstract
syntax tree, which is then unparsed to create the transformed source code. All this is
illustrated in Figure 1.1, which is adapted from Padioleau et al. [2006a, Figure 4].

Apart from using Coccinelle as an aid in describing evolutionary changes, its code
matching capabilities can also be used for finding bugs [Stuart et al., 2007, Lawall
et al., 2008]. In this section we will describe the features of SmPL, focusing on the
features needed to find bugs. The rest of the section is structured as follows: §1.1.1 will
describe the code transformation features, §1.1.2 will illustrate the different patterns
for matching code, §1.1.3 will explain the isomorphism features, §1.1.4 will explain the
different ways to alter the way that CTL-VW code is generated, and §1.1.5 will describe
how to chain together multiple rules to perform more complex matches.

1.1.1 Transforming code using SmPL

To understand how semantic patches work, we must first understand what a regular
patch is. If we look at the source code example in Listing 1.1 and we want to replace
all uses of f with uses of g then we must do this manually. Once we have finished this
process, we may generate a diff file that shows the differences between the original
state and the new state. The diff file is frequently called a patch due to the program
commonly used to apply diff files to existing source code. An example diff file that
changes uses of f to uses of g in Listing 1.1 can be seen in Listing 1.2. Line 1 indicates
the original source file and line 2 the revised source file. Lines 5 and 10 indicate that
the use of f is to be removed, and lines 6 and 11 indicate to add a use of g. Using the
patch utility to update a system can be error-prone as it hinges on the diligence of the
programmer making the changes to identify all places that a change should be made.
It has been shown that for larger systems in particular the programmer may frequently
miss such places [Padioleau et al., 2006c].

1The control flow graph will be described in more detail in §3.3.

1.1. Coccinelle 3

match the CTL
against the CFG
using a model

checking algorithm

translate to CTL

expand isomorphisms

parse SmPL rule

translate to CFG

parse C file

modify matched code

unparse

done
more rulesmore rules

Figure 1.1: The workings of Coccinelle

void foo() {

f();

}

void bar() {

f();

}

Listing 1.1: C functions calling f()

4 Introduction

1 --- a/foo.c 2008-08-05 09:15:44.000000000 +0200

2 +++ b/foo.c 2008-08-05 09:16:09.000000000 +0200

3 @@ -1,7 +1,7 @@

4 void foo() {

5 - f();

6 + g();

7 }

8
9 void bar() {

10 - f();

11 + g();

12 }

Listing 1.2: Diff file for replacing uses of f with uses of g in Listing 1.1

At the very basic level semantic patches work almost like regular patches, as illus-
trated in Listing 1.3, where all calls to f is replaced with calls to g. The difference to
the regular patch utility is that the semantic patch can replace the function call in all
files regardless of its location, whereas the regular patch utility only would be able to
replace f with g in a specific file and in a specific context. This alone gives Coccinelle a
benefit over the program patch.

However, semantic patches affords us a great deal more control in what we match.
This is done using meta-variables that allows us to abstract several things of the abstract
syntax tree including types, expressions, statements, and identifiers. As shown in
Listing 1.4 we can state that no matter what argument f is called with, it should be
replaced with g with the same argument. Since a function argument is an expression
[ISO/IEC 9899:1990, ISO/IEC 9899:1999], we use an expression meta-variable E. This
allows us to easily replace both f(usb->buffer) and f(data) with corresponding
calls to g—something that would have required specific, manual replacements by a
developer at every location where f is used, if he was using patch instead.

SmPL also allows us to create semantic patches with more complex patterns. Con-
sider e.g. Listing 1.5 where we replace f with g inside all while loops when we are in a
then-branch of an if, and replace h with g in the else-branch. This illustrates the case
where special-purpose functions f and h are replaced with a more general function
g. The ‘...’ construct is used to say that zero or more control flow graph nodes may
occur between two constructs, or that the contents are not important for the patch like
the conditional expression for both the while and if.

We can also create semantic patches that allow us to update parts of an expression
as illustrated in Listing 1.6. This replaces any expression on the form x + y with 2 + y.
While being nonsensical, we can use this in general to add new parameters to functions,
replace single arguments in function calls or restructure conditionals where one part
of the conditional must be removed.

The last type of meta-variable we will briefly discuss is the positionmeta-variable
that will be most useful when reporting bugs. Other bound meta-variables do not

1.1. Coccinelle 5

@@ @@

- f();

+ g();

Listing 1.3: Simple SmPL patch

@@ expression E; @@

- f(E);

+ g(E);

Listing 1.4: SmPL patch using expression meta-variable

@@ expression E; @@

while (...) {

if (...) {

...

- f(E);

+ g(E);

...

} else {

...

- h(E);

+ g(E);

}

}

Listing 1.5: Contextual SmPL patch

@@ expression E1, E2; @@

- E1

+ 2

+ E2

Listing 1.6: Replacing a single function argument using SmPL

6 Introduction

contain information about the positions in the source code where they occur, so the
concept of a positional meta-variable was created instead. These meta-variables can
be attached to any SmPL token, but we will only need to attach them to expression
meta-variables. An example of this is shown in Listing 1.7 (note that in C the function
name is an expression) where we match a free to an expression E and attach position
p1 to it, and a subsequent use of E where we attach position p2.

Regardless of the semantic patch, Coccinelle is insensitive to any whitespace and
comments interspersing the constructs being matched.

1.1.2 Patterns for matching code

The semantic patches we have seen so far have stayed fairly close to the patch origins
of SmPL. SmPL does, however, contain a number of other ways to match code that
may be useful when we are searching for bugs. We have already seen the ‘...’ pattern
for abstracting away control flow, but SmPL also contains patterns for searching for
zero or more occurences of something (Listing 1.8), as well as one or more occurrences
(Listing 1.9).

Using the ‘...’ pattern requires that what comes before and after it must exist in
the control flow graph in order to return a match. By using ‘<...α...>’ instead, α
is not required to exist in the control flow graph for there to be a match, but if α is
in the control flow graph all such matches are returned. Finally, using ‘<+...α...+>’
matches if there is at least one use of α.

Another type of pattern that SmPL supports is the selection pattern where different
items can be matched. This is illustrated in Listing 1.10. This pattern matches the
declaration of an identifier I that is assigned by malloc later in the function, and later
again it has either been assigned a new value, or has been indexed with some value E2.
This pattern may, for example, form the basis of a patch for finding buffer overflows.

Lastly, SmPL supports to constrain matches on the different forms of ‘...’ patterns
using the when construct as illustrated in Listing 1.11 where we indicate that there should
be no match if I is assigned with an arbitrary expression between the malloc and use.

Coccinelle supports several other patterns for expressing abstractions over paths
that we will not cover here as we do not need them for finding bugs in this thesis
[Padioleau et al., 2006b, 2007].

1.1.3 Isomorphisms

Isomorphisms in Coccinelle are user-programmable rules that specify equivalences
between different constructs in the C programming language that are automatically
expanded when Coccinelle matches semantic patterns to source code. This ensures
that a user does not need to enumerate all possible ways to express a pattern in every
semantic patch he writes, as they can be placed in a file containing all the relevant
isomorphisms.

By default, Coccinelle contains a number of useful isomorphisms located in the
standard.iso file. One such isomorphism is shown in Listing 1.12. The conditionals

1.1. Coccinelle 7

@@

expression E; position p1, p2;

@@

free@p1(E);

...

E@p2

Listing 1.7: Using positional meta-variables in a semantic patch

@@

type T; expression E1, E2; identifier I;

@@

T I[E1];

<... I[E2] ...>

Listing 1.8: SmPL construct for matching zero or more matches

@@

type T; expression E1, E2; identifier I;

@@

T I[E1];

<+... I[E2] ...+>

Listing 1.9: SmPL construct for matching one or more matches

@@

type T; expression E, E2; identifier I;

@@

T* I;

...

I = (T)malloc(E);

...

(

I = E2

|

I[E2]

)

Listing 1.10: SmPL construct for selecting different matches

8 Introduction

@@

type T; expression E, E2, E3; identifier I;

T* I;

...

I = (T)malloc(E);

... when != I = E3

I[E2]

Listing 1.11: SmPL construct for constraining path abstraction matches

are as one would expect, so given an expression X comparing X to zero is equivalent
whether it is on the right or left-hand side, and it is the same as testing the negation of
X. The equivalence to !X is not biconditional since if X is bound to a pointer variable,
NULL is not the same as 0 [ISO/IEC 9899:1990],2 unlike C++ where NULL is defined as
const int NULL = 0; [ISO/IEC 14882:1998].

In Listing 1.13 we define a special isomorphism rule that enumerates some possible
ways to redefine a variable, regardless of whether the equivalences make sense semanti-
cally. An isomorphism rule that enumerates all possible ways to redefine a variable
will be used in Chapter 3.

1.1.4 Tweaking the matching

In CTL-VW, formulas can be existentially quantified (the formula must be true on one
path) and universally quantified (the formula must be true on all paths), however the
translation from SmPL to CTL-VW currently only supports that a formula is existential
or universal.3 Consider for example the function in Listing 1.14. If we were to match
universally for the pattern f(); ... g(); then it would fail since g() is not called on
all paths from where f() appears. Instead, Coccinelle tries to reason about these error
paths and tries to quantify universally, except on the error paths, thus matching the
two calls in the function, even though a path exists where g() is not called.

This works very well for the semantic patches for source code evolution, but for
finding bugs it does not really matter whether the fault is in or outside the error path, we
just care whether a path exists with a bug on it. For this situation, Coccinelle provides
the option exists that can be placed as shown in Listing 1.15. Here the rulename is
merely a name for the rule—if it is absent Coccinelle interprets exists as the rule’s
name and not an option. In other situations one might want to ensure that something
holds on all paths, including error paths. This can be done using the when syntax, but
rather than using the ‘!=’ syntax from Listing 1.11, one may use ‘when strict’ and the
tokens that come before and after the dots must be there on all paths.

The last rule option that we will describe here is the using option that allows one to
add isomorphism rules like the ones shown in §1.1.3. The using option takes a filename
as an argument as shown in Listing 1.16.

2NULL is defined as ‘#define NULL ((void*)0)’.
3Work is under way to remove this limitation.

1.1. Coccinelle 9

Expression

@ is_zero @

expression X;

@@

X == 0 <=> 0 == X => !X

Listing 1.12: SmPL example isomorphism rule

Expression

@ redef @

expression E1, E2;

@@

E1 = E2 <=> E1 += E2 <=> E1 -= E2 <=> E1 *= E2

Listing 1.13: Example isomorphism for matching variable redefinitions

int foo(void) {

int x = f();

if (!x) {

printf(stderr, "Failed when invoking f()\n");

return x;

}

g();

return x;

}

Listing 1.14: C function with an error path

@ rulename exists @

type T; identifier I; expression E1, E2;

@@

T I[E1];

<+... I[E2] ...+>

Listing 1.15: Using existential quantification in a SmPL patch

10 Introduction

@ rulename using "redef.iso" @

type T; identifier I; expression E1, E2;

@@

T* I;

...

I = malloc(E1);

...

(

I = E2

|

I[E2]

)

Listing 1.16: Adding isomorphism rules to a SmPL rule

1.1.5 Chaining rules

Up until this point we have only seen small, isolated rules, but there are often situations
where it is useful to first match one thing and then dependent on the first match,
match something else. This can, for instance, be useful if you are describing a collateral
evolution where the naming of a function is up to the given driver, but the change
should only be made in that one specific function and not in general. The chained rule
in Listing 1.17 is taken from Padioleau et al. [2007, p. 5]. As can be seen, rules need to
be named in order for later rules to use things from earlier ones. In rule1we search for
something of type struct SHT whose field proc_info is assigned proc_info_func, a
function pointer. In rule2 the meta-variable proc_info_func is inherited from rule1

using the notation identifier rule1.proc_info_func, this indicates that the bound
value from rule1 is to be used in rule2, and rule2 then proceeds to alter the function
parameter list to have a pointer passed to it instead of the hostno.

If nothing is bound to a meta-variable in an earlier rule that the current rule
uses, the current rule is simply never run. We can use this functionality to discard
uninteresting things when searching for bugs by only assigning positions to interesting
tokens and then use the position variables in a later rule that reports whether the code
matched might be a bug.

SmPL supports other options to indicate further dependencies between rules that
we do not need for finding bugs. Some of these can be seen in the work by Padioleau
et al. [2007].

1.2 Program analysis

Using programs to evaluate properties of code is employed inmany places in Computer
Science. When optimising a program in a compiler, we may restructure the flow of
a program by moving computations outside a loop if their values are not dependent
on the loop (code hoisting), or by letting the compiler evaluate all the constants in the

1.2. Program analysis 11

@ rule1 @

struct SHT ops;

identifier proc_info_func;

@@

ops.proc_info = proc_info_func;

@ rule2 @

identifier rule1.proc_info_func;

identifier buffer, start, offset, inout, hostno;

identifier hostptr;

@@

proc_info_func (

+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,

- int hostno,

int inout) { ... }

Listing 1.17: Collateral evolution to proc_info_func

program as close to their use as possible (constant propagation). A partial evaluator
will even generate different special-purpose functions depending on the values that
are known at the time of specialisation [Jones et al., 1993]. Finally, analysis tools for
finding software faults will need to reason about the values in the program to determine
whether a computation might lead to an unwanted situation, e.g. a buffer overflow
[Verbrugge et al., 1996, Xie et al., 2003].

Bug finders are usually divided into one of two categories: the static tools that
parse and analyse the code without running it, and the dynamic tools that run the
program and observe what happens as the program executes. Finally, a third group, the
hybrid tools, has emerged that both employ static and dynamic solutions. Compilers
typically only employ simple static analyses in order to keep the time of compilation
short, however some compilers also support dynamic analyses in order to find parts of
a program that requires more thorough optimisation—this feature is typically known
as profiler guided optimisations. Bug finders, on the other hand, use all three categories,
e.g. xg++ uses static analyses to find primarily structural bugs [Engler et al., 2000],
Valgrind uses dynamic analyses to find memory issues [Seward and Nethercote, 2005],
and CCured uses both static analyses to infer safe use of pointers and dynamic analyses
to evaluate the safety of the pointers it could not deem safe statically [Necula et al.,
2005].

We will briefly describe the concepts of static analysis in §1.2.1 and dynamic analysis
in §1.2.2. The static analysis concepts will be needed as part of our extensions in
Chapter 3 and the dynamic analysis concepts as part of our comparisons with other
tools in Chapter 5. We will also briefly touch on hybrid analysis in §1.2.3.

12 Introduction

1.2.1 Static analysis

There are several kinds of static analyses including Hoare invariants, type and effect
systems, constraint based analysis and abstract interpretation [Cousot and Cousot,
1977, Nielson et al., 1999, Huth and Ryan, 2004]. For this thesis we have chosen to only
employ abstract interpretation as it is simple and adequate for showing the bug finding
capabilities of Coccinelle. We will therefore only discuss abstract interpretation in this
section. Note that Coccinelle already employs model checking using CTL-VW, so the
abstract interpretation will only be necessary for reasoning about the flow of data.

Abstract interpretation does almost what the name suggests, it executes an abstract
model of the program, though with some caveats, since the evaluation of a program
may e.g. lead to infinite loops and undefined behaviour. Thus, abstract interpretation is
typically set to only run a finite number of loop iterations and to warn about undefined
behaviour. In effect, an abstract model of (a part of) the program is run repeatedly
until the values it infers are consistent between two runs. More stringently, the result of
an abstract interpretation of a data flow function f is the least fixed point of f , defined
on a lattice [Cousot and Cousot, 1977, Nielson et al., 1999].

The abstract interpretation can be divided into two categories: the interprocedural
analysis that analyses the whole program at once, or the intraprocedural analysis that
analyses each function separately. Since Coccinelle is often run only on fragments of
the whole program (e.g. only a single subsystem of the Linux kernel may be analysed
at one time rather than the entire Linux kernel with all possible modules), and a
single Coccinelle rule is matched intraprocedurally, we will also adopt intraprocedural
analyses for reasoning about the data flow of programs.4

Intraprocedural and interprocedural analyses can be subdivided into the different
categories described below.

Flow sensitivity is used to determine whether the data flow information is evaluated
based on the control flow. If we take Listing 1.18 on the next page as an example,
computing the possible values of i would give i ∈ [0; 30) in a flow-insensitive
algorithm, but the values i ∈ [0; 20) in the control flowgraphnode corresponding
to line 5 and i ∈ [0; 30) in the control flow graph node corresponding to line 8
in a flow-sensitive algorithm. Thus, a flow-sensitive algorithm will provide more
accurate information for some problems.

To illustrate the usefulness of added precision in a data flow analysis, we can try
to use the flow-sensitive and flow-insensitive analyses just described to see if the
program in Listing 1.18 contains a bug. Using the flow-insensitive information,
buffer1 would be indexed with i ∈ [0; 30), which is clearly a bug since buffer1
only has allocated space for 20 elements. However, in practice there is no such
error, as can also be seen with the improved information for the flow-sensitive
algorithm.

4There are no technical limitations for doing whole program analysis with Coccinelle if it is run on
the entire program, but we have deemed the added precision of an interprocedural analysis unnecessary
to illustrate the usefulness of data flow analyses for using Coccinelle to find bugs.

1.2. Program analysis 13

1 void foo(int buffer1[20], int buffer2[30]) {

2 int i;

3
4 for (i = 0; i < 20; ++i)

5 buffer1[i] = bar(i, 1);

6
7 for (i = 0; i < 30; ++i)

8 buffer2[i] = bar(i, 2);

9 }

10
11 int bar(int i, int run) {

12 if (run == 1)

13 return i;

14 else

15 return 100 - i;

16 }

Listing 1.18: Simple C program

When considering flow-sensitive algorithms, we furthermore discern between
path sensitivity and path insensitivity. An analysis is path-sensitive if it uses
information from branch nodes (e.g. i < 20) to constrain the possible values
according to the branch node for the true branch and false branch respectively.

Context sensitivity is used in interprocedural analyses to disambiguate function call-
sites. In the context of Listing 1.18, a context-insensitive algorithm for estimating
program values wouldmerge the possible values that bar could return so that the
possible values of i would be [0; 100]. However, in a context-sensitive algorithm,
the values of i would be [0; 20) at the first call-site, and (70; 100] at the second
call-site. We will not implement interprocedural analyses in this thesis, but their
future use might help find bugs that were not otherwise found, as well as help
remove false positives (reported faults that are not actual faults).

As an example of static analysis using abstract interpretation, we will present
constant propagation as an intraprocedural, flow-sensitive, path-insensitive analysis.
Informally, the problem can be stated as: if at some control flow graph node there is a
use of variable x and that it is only reached from nodes where x is constant then we
can rewrite x to be this constant, e.g. removing the need for allocating a register to
the variable. More formally, constant propagation of integers is defined on the lattice
(L,⊔,⊓) shown in Figure 1.2, that isZ extendedwith ⊺ and � elements (L = Z∪{⊺, �}),
where � signifies that we do not have any information about a variable (all variables
are set to � initially) and ⊺ signifies that a variable is not a constant. We define ⊔ as
follows.

14 Introduction

⊺

0−1 1⋯ ⋯

�

Figure 1.2: Constant propagation lattice

c1 ⊔ c2 =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⊺ if c1 = ⊺ ∨ c2 = ⊺ ∨ c1, c2 ∈ Z.c1 ≠ c2
� if c1 = � ∧ c2 = �
c1 if c2 = � ∨ c1, c2 ∈ Z.c1 = c2
c2 if c1 = � ∨ c1, c2 ∈ Z.c1 = c2

We can now iterate a solution such that the input of each control flow graph node
is the join (⊔) of each variable from all its predecessors, and the output is the input
without the variables that are assigned.5 After a finite number of iterations we will
know what variables are constant at each control flow graph node, including the value
of the constant. The number of iterations is finite since a loop will only have to be
executed three times: once for the initial run. The second run will push the lattice value
to ⊺ if a variable is not a constant, or maintain the constant c, the final run is just to
verify that nothing has changed. We will generalise constant propagation in Chapter 3
in order to track the possible values a variable may assume during the execution of a
function.

1.2.2 Dynamic analysis

As opposed to static analysis, dynamic analysis runs the program and tracks its state
along its execution path in order to find bugs or evaluate invariants. The dynamic
analysis programs we will consider track a program’s state by instrumenting the binary
program code with extra checks [Seward andNethercote, 2005]. Unlike a static analysis,
a dynamic analysis only deals with a single execution path, so the program being
analysed needs a thorough test library that covers most parts of the program in order
to ensure an accurate analysis. Furthermore, care should be taken when the dynamic
analysis tool rewrites program code not to change timings drastically. Changes to
timings may mask possible race conditions, such that they are never discovered by the
analysis tool, but occur when the program is deployed.

Several dynamic analysis tools are widely used to check programs for bugs today,
including the commercial IBM Rational Purify, and the open source tools, Valgrind

5This can be defined as a transfer function, see Nielson et al. [1999].

1.2. Program analysis 15

[Seward and Nethercote, 2005, Nethercote and Seward, 2007a] and ElectricFence.6
Current information on the exact workings of IBM Rational Purify are almost non-
existent. Valgrind instruments the binary code of a program and inserts checks to
track every memory access and every value computed in order to be able to report on
erroneous uses of memory. ElectricFence uses the virtual memory hardware to create
an interrupt zone around any buffer such that if the outside of a buffer is touched, a
debug interrupt is immediately triggered.

Another approach, which does not seem to have widespread use in the popular
tools, is to insert assert checks several places in the code, e.g. to catch out of bounds
memory accesses. Looking at the example program in Listing 1.19, we should, to be safe,
check every use of buffer to ensure we do not write beyond the allocated space. We
can use a transformation program like Coccinelle to insert the assert checks as can be
seen in Listing 1.20 on the following page. This, of course, causes a problem of what to
do with return values from a function, as extending the return type to also include the
size, e.g. in a struct, would change the interface of the function and require changes at
all uses of the function. If it is a library that we are instrumenting, all programs using
this library will have to be transformed in the same way (conversely, all the libraries
would have to be transformed as well if a program is instrumented and it passes a
buffer to a library as a function argument), requiring a sizable time investment.

The primary problem of dynamic analysis is illustrated in Listing 1.21 where the
function foo is never evaluated, thus never triggering the bug (provided size is sup-
posed to be the length of buffer). Another problem with dynamic analyses is that
they typically slow down the execution drastically, e.g. Valgrind executes the program
between 10 and 50 times more slowly than running it natively. A dynamic analysis will
typically never touch all possible execution paths and can thus easily miss bugs in the
program. Finally, unlike static analysis, a dynamic analysis always requires the entire
program in order to check it.

1.2.3 Hybrid analysis

The slow execution of dynamic analysis tools sparked an interest in removing as many
of the dynamic checks as possible, by using static analyses to deem some of the memory
accesses safe. This is the basis of the hybrid analysis tools, which try to draw on the
best of both worlds.

One of the best known tools that performs hybrid analysis is CCured that uses
static analysis to infer that pointer accesses are safe, and add runtime code to check
pointer accesses that may be unsafe [Necula et al., 2005]. Other systems that use a
hybrid analysis are some of the Ada compilers, since Ada requires that each array check
is verified to be within the bounds of the array [ISO/IEC 8652:2007(E), §4.1.1]. The Ada
compilers may then use static analysis to remove as many runtime checks as possible
and maintain the dynamic checks for the remaining locations [Møller, 1994, Bernstein

6Sales-information on IBM Rational Purify can be obtained from http://www.ibm.com/software/

awdtools/purify/, Valgrind is available from http://www.valgrind.org, and ElectricFence can be
obtained from http://perens.com/works/software/ElectricFence/.

http://www.ibm.com/software/awdtools/purify/
http://www.ibm.com/software/awdtools/purify/
http://www.valgrind.org
http://perens.com/works/software/ElectricFence/

16 Introduction

int* create_buffer(int size, int init) {

int i;

int* buffer = malloc(size * sizeof(int));

for (i = 0; i <= size; ++i)

buffer[i] = init;

return buffer;

}

Listing 1.19: Sample buffer allocation function

int* create_buffer(int size, int init) {

int i;

int buffer_size = size * sizeof(int);

int* buffer = malloc(buffer_size);

for (i = 0; i <= size; ++i) {

assert(i >= 0 && i < buffer_size);

buffer[i] = init;

}

return buffer;

}

Listing 1.20: Sample buffer allocation function, checked

and Duff, 1999]. Likewise, Java also requires a bounds check for each array access to
ensure safe execution of a program [Gosling et al., 2005] and proposals have beenmade
to extend the HotSpot™ Java Virtual Machine (JVM) just-in-time (JIT) compiler with
an analysis to remove some of these checks [Würthinger et al., 2007].

We can use Coccinelle as a hybrid analysis tool by using the matching engine to
find bugs and the transformation engine to add code checks in the places that cannot
be determined safe or faulty, as illustrated by Stuart et al. [2007]. However, to show
that Coccinelle can be used as a bug finding tool, we will only use it as a static analysis
tool in this thesis.

1.3 Outline of the thesis

In Chapter 2 we construct a taxonomy for the bugs that we search for; this taxonomy
will include information on what patterns to search for, and how to remove false
positives from the matches. In Chapter 3 we describe the theory and implementation of
the static analyses required for filtering the false positives from Chapter 2. In Chapter 4

1.3. Outline of the thesis 17

int foo(int* buffer, int size) {

int i;

for (i = 0; i <= size; ++i)

buffer[i] = i;

}

int bar(int* buffer) { return buffer[0]; }

int main() {

int i;

int *buffer = malloc(10 * sizeof(int));

for (i = 0; i < 10; ++i)

buffer[i] = 10 - i;

printf("%d\n", bar(buffer));

return 0;

}

Listing 1.21: Illustration of the shortcomings of dynamic analysis

we use the developed bug finding patterns and analyses to try to find bugs in Open
Source software code-bases and evalute its usefulness. Chapter 5 will look at our success
rates of finding bugs and match it against other available bug finding tools. Finally,
Chapter 6 will conclude on our efforts and remark on what future initiatives will help
improve Coccinelle for finding bugs.

Chapter 2

Bug taxonomy

While there is a fairly ubiquitous understanding of ‘a bug’ in Computer Science and
programmer circles alike, the understanding of the underlying flaw of a bugmight differ
slightly. If we furthermore try to ascertain whether using memory after it has been
freed is a memory issue or a resource issue, then the answer will be highly dependent
on the point of view of the individual programmer. Even if we have many different
categories to place bugs into, we may have no guarantee that we cannot categorise
the individual bugs radically differently. A systematic categorisation is also known as
a taxonomy. In this chapter we will consider a taxonomy of software faults that will
allow us to approach finding bugs in software by describing software fault patterns
systematically.

In order for a taxonomy to categorise the same bug in the same way repeatedly
it must have a number of properties. Lough [2001] and Hansman and Hunt [2005]
provide some of the best summaries of what a good taxonomy should be, based on
many of the existing works on taxonomies. We provide themain points of the summary
by Hansman and Hunt [2005]:1

Accepted The taxonomy should be structed so that it can become gener-
ally approved.

Comprehensible It should be understood by people in the security field.

Completeness It should account for all possible flaws and provide cate-
gories accordingly.

Determinism Classification should be clearly defined.

Mutually exclusive Each attack should belong to at most one category.

Repeatable It must be possible to repeat the same classification more
than once.

Useful It can be used both in the security industry and for research.
Despite the fact that the above list is by many considered, with minor variations, to

be a list of good properties for a taxonomy, several of the taxonomies proposed in the
literature do not adhere to all the points above. In particular, many do not categorise a
bug uniquely in one category.

1It is our belief that some of their points overlap, e.g. ‘terminology complying with established security
terminology’ could be comfortably grouped under their ‘comprehensible’ point. For such overlaps we will
omit the point without further remarks.

19

20 Bug taxonomy

In this chapter we will first look briefly at some of the existing taxonomies for
software faults, then we will describe our rationale for extending an existing taxon-
omy rather than constructing our own, and finally describe some concrete taxonomy
elements.

2.1 Previous work

The work on software fault taxonomies is largely divided into three different categories:
the ones that are based on the type of attack [Lindqvist and Jonsson, 1997, Weber, 1998,
Lippmann et al., 2000, Weaver et al., 2003, Hansman and Hunt, 2005, CAPEC], the
ones that are based on how to defend against an attack [Killourhy et al., 2004], and the
ones that are based on the underlying vulnerability [Bisbey and Hollingworth, 1978,
Landwehr et al., 1994, Aslam, 1995, Bishop, 1995, Aslam et al., 1996, Krsul, 1998, Martin
et al., 2006, Tsipenyuk et al., 2006, CWE]. Since our concern is to find bugs, we will
primarily look at the vulnerability-based taxonomies as they focus on describing and
classifying the actual bug and not like the attack taxonomies how to attack bugs.

Some of the earliest work on a vulnerability taxonomy was made by Bisbey and
Hollingworth [1978]. They were trying to understand operating system vulnerabilities
in an effort to propose automatic measures for identifying them, what is today known
as Intrusion Detection Systems (IDS). Interesting to this work is not so much their
taxonomy that several later papers have pointed out is inadequate [Aslam, 1995, Weber,
1998], but their approach on finding errors, which they tried to solve using patterns
that expressed properties that were to occur in order for a vulnerability to be exploited
in the system. An example of a generalised pattern that detects race conditions where
an attack may modify a variable between its check and use is shown in Listing 2.1. They
did not, however, succeed in applying their pattern matching approach widely as the
computing power of the time was insufficient.

Landwehr et al. [1994] take a slightly different approach by categorising how a
vulnerability entered the system (inadvertendly or maliciously), when it entered the
system (in the design, development, maintenance or execution phase), and by location
(hardware or software). The principal goal in their research is to be able to locate when
the bugs enter the system in an effort to understand which part of the development
process should receive further attention in order to eliminate the bugs. Several people
including Aslam [1995] and Lindqvist and Jonsson [1997] indicate that this taxonomy is
virtually impossible to use if you do not have access to the source code of the program
that the vulnerability occurs in, as well as detailed knowledge of the software’s progress
through the development cycle.

In his thesis Aslam creates a taxonomy for faults in the UNIX operating system
and uses it to categorise fault reports from the Computer Emergency Response Team
[CERT] into a database for use in an IDS [Aslam, 1995, Aslam et al., 1996]. Krsul [1998]
later argues that Aslam’s work is merely a categorisation and not a taxonomy since it
does not adequately generalise and discuss the predictive properties of the classification
(Krsul addresses the shortcomings in his dissertation). It has been used in part as a

2.1. Previous work 21

B:M(X) and for some operation L occurring before M,

[for operation L which does not modify Value(X),

Value(X) before L NOT = Value(X) before M], and

Value(X) after L NOT = Value(X) before M.

Listing 2.1: Generalised pattern from Bisbey and Hollingworth [1978]

basis for the Common Weakness Enumeration [CWE] taxonomy as well as Krsul’s
own taxonomy.

Like many of the other articles we have looked at, Bishop [1995] also develops a
taxonomy to be used for IDS. The work builds upon the original categories of Bisbey
and Hollingworth [1978] and Landwehr et al. [1994]. It is source code-oriented and
does thus not escape the issues raised by Aslam [1995] and Lindqvist and Jonsson [1997]
that it is not easy to use for programs for which the source code is not available. Apart
from being used for intrusion detection, a concern of Bishop [1995] largely mirrors
the motivation of Landwehr et al. [1994] in giving developers advice on considering
abstract interfaces to code modules in an effort to avoid known errors.

In his dissertation, Krsul [1998] builds on the work by Aslam [1995] in order to
construct a taxonomy of software faults. He creates a taxonomy that adheres to all
the properties listed in the beginning of this chapter. This is done using a number of
decision trees to construct a unique and unambiguous way to classify software faults.

Finally, Tsipenyuk et al. [2006] created a fairly exhaustive taxonomy for software
faults to be used with their commercial analysis tool that seeks to be able to encompass
many different bugs. It is, as they state, divided into ‘seven different categories (plus
one for environment settings)’, among others input validation issues and API abuse,
which contains buffer overflows and weak string operations like strcpy respectively.
This taxonomy has later been used, among others, as a basis for CWE.

In 2004–2006 several people started working more actively towards a unified
taxonomy of software faults in an effort to provide a common vocabulary and reference
[Polepeddi, 2004, Hansman and Hunt, 2005, Martin et al., 2006]. Polepeddi [2004]
created a consolidated vulnerability database that collected faults from many different
sources (e.g. BugTraq and Secunia). The success rate of including faults from each
source is heavily dependent on the source’s adoption of the Common Vulnerability
and Exposures [CVE] identification number that Polepeddi uses as his database’s
primary key. This work showed that it was possible to get a sizable number of existing
bug reports consolidated with his taxonomy. Around the same time, Martin et al.
[2006] also propose using CVE as a basis for a Common Weakness Enumeration
taxonomy [CWE]. However, unlike Polepeddi’s endeavour, this effort is backed by a
number of security researchers, a large part of the security industry as well as several
US government agencies, providing it a greater leverage toward common adoption.
CWE has been constructed using a large number of existing taxonomies, including
those of Aslam [1995] and Tsipenyuk et al. [2006]. Since its first introduction, CWE
has been greatly extended and seen a number of updates and is now actively being

22 Bug taxonomy

used by CVE for cross-referencing vulnerabilities [Martin and Barnum, 2008] and it is
furthermore set to release in a first stable version in August 2008. This is likely to be
the most promising work on a common vocabulary for software vulnerabilities to date.

2.2 Extending the CommonWeakness Enumeration
taxonomy

As part of the progress of CWE, Martin and Barnum [2008] have discovered that
merely presenting source code examples is often not adequate to allow the people using
the taxonomy to understand the exact vulnerability. To remedy this they have added
information to CWE that indicate the lines that are involved in a specific vulnerability
[Martin and Barnum, 2008]. However, like many before us, we believe that a better
approach than to only give examples is to use a general pattern to describe the underly-
ing fault [Bisbey and Hollingworth, 1978, Alexander et al., 2002, Hovemeyer and Pugh,
2004]. While it is most likely impossible to describe a fault using a general pattern, it
should hopefully be possible to describe a fault using a general pattern for a specific
programming language.

Using SmPL we will extend a few CWE elements with a general pattern to describe
that fault. Each CWE element we consider will be structured as follows: the CWE ID
and URL, a description of the issue in our own words, an example of a fault, a pattern
description in SmPL matching the general structure of the code, and finally one or
more refinements discussing false positives and false negatives. We will strive to use
real-world faults in an effort to underline the necessity of bug finding tools, unlike
CWE that just gives made-up examples.2 To the extent that the bug relies on more
than the structural properties of the program, the full SmPL pattern will be given in
Chapter 3.

For ease of reference, we present a tree-view of where the bugs we look at fit into
the CWE taxonomy in Figure 2.1, and for each of the leaf elements we refer to a section
and page number in this chapter where it is extended.

2.2.1 Stack-based buffer overflow

CWE: 121 — http://cwe.mitre.org/data/definitions/121.html

Description: A stack-based buffer overflow occurs when a buffer on the stack has
data written past its bounds. This may often lead to either crashes, or in targeted
attacks, arbitrary code execution. An example of a simple buffer overflow can be seen
in Listing 2.2.

General pattern: When constructing an array, it must have a constant size when
placed on the program stack [ISO/IEC 9899:1990]. However, the constant size may be

2CWE does refer to real-world cases in the CVE, though, but CVE does usually not have associated
source code fragments.

http://cwe.mitre.org/data/definitions/121.html

2.2. Extending the CommonWeakness Enumeration taxonomy 23

633: Weaknesses that affect memory

120: Unbounded transfer (‘classic buffer overflow’)

121: Stack-based buffer overflow — §2.2.1, page 22

122: Heap-based buffer overflow — §2.2.2, page 24

416: Use after free — §2.2.3, page 26

Figure 2.1: Taxonomy element structure

int buffer[size];

int i;

for (i = 0; i <= size; ++i)

buffer[i] = i;

Listing 2.2: Example of stack-based buffer overflow

a computation based on other program constants as seen in Listing 2.3. Using the GCC
or ISO/IEC 9899:1999 variable length array extension instead, the requirement that
the array be constant sized is removed and variable length arrays can be placed on the
stack.3 Since the constant sized arrays are a special case of the variable length arrays,
we merely consider variable length arrays in the following. Matching declarations and
uses of variable lengths arrays can be expressed in Coccinelle as shown in Listing 2.4.
It is furthermore possible to create multi-dimensional arrays in C, but for the sake of
clarity, we will not make an effort to match them here.

Of the array index possibilities in Listing 2.4, perhaps the only one that is a bit
esoteric is the last one, which is, in practice, a rather seldom used way to access arrays.
This leaves the pattern *I which in ISO/IEC 9899:1990 would always be successful, but
may fail using GCC’s array of length zero extension or the flexible arrays in ISO/IEC
9899:1999.4 SmPL currently does not support the last three array uses so we will have
to omit matching them for the remainder of the thesis.

The SmPL patch matches all cases where we have a buffer definition followed by at
least one use, so this will generate a large amount of false positives.

Refinements: There are no further structural refinements to be made to this pattern
as the existence or absence of a bug hinges merely on whether the value of E2 is greater
than or equal to the corresponding value of E1. This pattern will be further refined in
§3.5.1 on page 43.

3This GCC extension is described in detail here: http://gcc.gnu.org/onlinedocs/gcc-4.3.0/
gcc/Variable-Length.html.

4http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Zero-Length.html

http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Variable-Length.html
http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Variable-Length.html
http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Zero-Length.html

24 Bug taxonomy

const int x = 20;

int buffer[x + 2];

Listing 2.3: Example array construction in ISO/IEC 9899:1990

@@ type T; identifier I, fld; expression E1, E2; @@

T I[E1];

<+...

(

I[E2]

|

*(I + E2)

|

(I + E2)->fld

|

(I.fld)[E2]

|

E2[I]

)

...+>

Listing 2.4: Stack-based buffer definition and usage match

2.2.2 Heap-based buffer overflow

CWE: 122 — http://cwe.mitre.org/data/definitions/122.html

Description: Heap-based allocation in the C Programming language typically occurs
with the malloc function, but the possible buffer overflows that arise from using this
function are symptomatic of all functions that return a buffer, like calloc in the C
standard library, kmalloc in the Linux kernel, g_malloc in GLib from the Gnome
project, and many other places. While a buffer returned from an allocation function
might be placed on the stack as well, it is more common for it to be heap-based. We
will match the use of memory returned by a function call together with the heap-based
buffer overflow as the search pattern is the same. An example of a heap-based buffer
overflow is shown in Listing 2.5.

General pattern: While malloc and calloc are essentially the same with regards
to the characteristics of the buffer overflow, the matching of the allocation call is not,
because we need to retrieve the buffer size as well, and for malloc this is dependent only
on its single argument, however for calloc it is a multiple of its two arguments. This
makes it hard to write a single SmPL pattern to match allocation-function based buffer
allocations and uses. While not necessarily elegant, we can group all like-mannered
functions into the same pattern as we can see in Listing 2.6—we will need equivalent
SmPL patterns for other allocation functions with different arguments.

http://cwe.mitre.org/data/definitions/122.html

2.2. Extending the CommonWeakness Enumeration taxonomy 25

int* buffer;

int i;

buffer = (int*)malloc(sizeof(int) * size);

if (!buffer)

abort();

for (i = 0; i <= size; ++i)

buffer[i] = i;

Listing 2.5: Example of allocation-function based buffer overflow

@ r exists @

identifier I;

expression E1, E2, E3, E4;

type T;

@@

(

I = (T)malloc(E1)

|

I = (T)kmalloc(E1)

)

<+... when != I = E4

(

I[E2]

|

*(I + E2)

|

*I

)

...+>

? I = E3

Listing 2.6: Allocation-function based buffer allocation and usage match

26 Bug taxonomy

Apart from this, the pattern in §2.2.1 on page 22 (stack-based buffer overflows) is
almost equivalent to the pattern presented in Listing 2.6, including the fact that we will
match a lot more than necessary and thus have a lot of false positives in non-bug cases
that we need to filter away.

Refinements: There are no further structural refinements to be made to this pattern
as the existence or absence of a bug hinges merely on whether the value of E2 is greater
than or equal to the corresponding value of E1. This pattern will be further refined in
§3.5.2 on page 45.

2.2.3 Use after free

CWE: 416 — http://cwe.mitre.org/data/definitions/416.html

Description: Using memory after free, e.g. freeing it twice, may lead to subtle bugs
that do not manifest themselves until a much later point in the program execution. As
an example, Listing 2.7 shows that camera->sem is accessed in line 21 after camera is
freed in line 14, provided that camera->buf is NULL in line 12.

General pattern: The pattern for use after free can be generally expressed as seen in
Listing 2.8. A use after free can happen with any function that deallocates memory,
including free from the C standard library, kfree from the Linux kernel, etc. The
SmPL patch must enumerate each function to be matched. The interesting matches
are the ones where both p1 and p2 are bound. We will see in Chapter 3 how to use this
information.

Refinements: Even with the guard against redefinitions, we will still generate numer-
ous false positives in several code-bases, since it might only be a subexpression of E
that is redefined between the free and the use. This can e.g. be seen in the source code
for mplayer in Listing 2.9.5

With the redefinition check we risk getting false negatives instead, as illustrated by
the admittedly contrived code fragment in Listing 2.10.

Given the huge number of possible ways to construct expressions that contain any
number of subexpressions, it becomes prohibitively expensive to manually enumerate
all of these. Instead we will consider an extension in Chapter 3 that can handle this for
us.

5mplayer is an open source media player available at http://www.mplayerhq.hu. The source code
is taken from svn revision 27095, stream/tvi_dshow.c lines 2991–2993.

http://cwe.mitre.org/data/definitions/416.html
http://www.mplayerhq.hu
stream/tvi_dshow.c

2.2. Extending the CommonWeakness Enumeration taxonomy 27

1 static void camera_disconnect(struct usb_device *dev, void *ptr)

2 {

3 struct camera_state *camera = (struct camera_state *) ptr;

4 int subminor = camera->subminor;

5
6 down (&state_table_mutex);

7 down (&camera->sem);

8
9 /* If camera’s not opened, we can clean up right away.

10 * Else apps see a disconnect on next I/O; the release cleans.

11 */

12 if (!camera->buf) {

13 minor_data [subminor] = NULL;

14 kfree (camera);

15 } else

16 camera->dev = NULL;

17
18 info ("USB Camera #%d disconnected", subminor);

19 usb_dec_dev_use (dev);

20
21 up (&camera->sem);

22 up (&state_table_mutex);

23 }

Listing 2.7: Use-after-free bug in linux-2.4.1/drivers/usb/dc2xx.c

@ bug exists @ expression E, E2; position p1, p2; @@

(

kfree@p1(E)

|

free@p1(E)

)

...

(

E = E2

|

E@p2

)

Listing 2.8: Use after free match

for (i = 0; chain->arStreamCaps[i]; i++) {

free(chain->arStreamCaps[i]);

}

Listing 2.9: False positive for use after free match

28 Bug taxonomy

free(foo);

foo = foo;

free(foo);

Listing 2.10: False negative for double free match

Chapter 3

Extending Coccinelle

Coccinelle is at its core a source-to-source transformation tool that takes a semantic
patch and one or more source code files as input and generates transformed files and
a diff that describes the changes from the original to the processed files. This is very
useful as long as you wish to transform code, but statically analysing programs in an
effort to find bugs only requires half of this: the source code matching based on the
semantic patch.

SmPL requires us to repeat code, and recompute amatch if we just want to constrain
our match to a part of what was written in the SmPL patch. Thus, we would like to
create a facility for more easily processing and reporting found matches. Furthermore,
Coccinelle makes no provisions for using data flow information, so we would like to
implement a very simple data flow analysis as a proof of concept that can handle some
of the false positives that we discussed in §2.2.1 and §2.2.2.

In order to provide a general-purpose processing and reporting facility that falls in
line with Coccinelle’s pursuit of being easy to understand for developers working with
the C Programming language, and the Linux kernel in particular, a solution would
be to integrate a scripting language. When you consider a scripting language that is
familiar to Linux kernel developers, only two come to mind: Perl and Python, both
of which are used already for various processing tools around the kernel. Bindings
for integrating either language with OCaml exist, but we have opted for integrating
Python with Coccinelle. This allows us to provide all the facilities easily: processing,
reporting, and testing data flow analyses.

In this chapter we will first describe the Python extension for Coccinelle, then we
will discuss the theory of generalised constant propagation and our implementation
of it, which we will use to find buffer overflows, then we will look at how to mitigate
the number of false positives for the use-after-free bug (see §2.2.3), and finally we will
complete the taxonomy elements from Chapter 2 using our extensions.

3.1 Scripting Coccinelle

Using Coccinelle for finding bugs requires a way to report possible bug sites since
without code transformation, Coccinelle does not generate any output. Furthermore, a
way to prototype new features without having to make substantial changes to the pars-
ing, interpretation and matching code in Coccinelle for the Semantic Patch Language
would allow us to more easily experiment with data flow analyses and other ways of
filtering matches. In particular filtering matches was considered in our preliminary

29

30 Extending Coccinelle

work on Coccinelle [Stuart et al., 2007], but the other requirements can also be ad-
dressed by integrating a scripting language. This means a one time change of SmPL to
allow scripting language rules on line with the existing SmPL rules (henceforth called
Coccinelle rules to disambiguate from scripting rules).

We will first describe the integration of Python into Coccinelle and then describe
how this can be used for reporting bugs, filtering matches and representing Coccinelle’s
meta-variables for use in the scripting rules.

To keep future possibilities open, we will allow the integration of any scripting
language into Coccinelle using the same SmPL extension. It will be the integrator’s
responsibility to bridge features from Coccinelle into the scripting language. We will
integrate Python with Coccinelle’s OCaml code using the Open Source project pycaml.1

The overall structure of a scripting rule is illustrated in Listing 3.1. The scripting-
language-identifier is the name of the scripting language, e.g. python. Themeta-variable-
inheritance-list is a list with zero or more bindings of meta-variables from previous
rules. These bindings are on the form local-name << rule-name.meta-variable-name;,
where local-name is the name of a valid identifier in the scripting language, and rule-
name.meta-variable-name is an inherited meta-variable like in Coccinelle rules. Finally,
scripting-language-source-code is a program in the scripting language that may use
some of the functions provided by the scripting language integration (see §3.4). List-
ing 3.2 shows a short SmPL patch that prints all identifiers in a program. This could,
for instance, be used as the basis of a design verification tool for checking naming
conventions in a project.

Python print statements are sufficient to easily report matches, however, we will
create a more elaborate mechanism for reporting errors that allows the user a greater
deal of autonomy, including logging to a file, printing to the monitor, and presenting
results in a graphical user interface. In an effort to provide users with these features and
to provide a more Python-esque programming environment—wrapping the functional
aspects of Coccinelle into an object-oriented interface—we will construct a small class
library that can be used in the scripting rules called coccilib.

For reporting and filtering we create the base class Output shown in Listing 3.3.
Here include_match provides filtering capabilities as the method is overridden by
Coccinelle to indicate whether a given match should be saved for further processing.
By placing this functionality in a function, the choice of whether to keep amatch can be
entirely up to the logic in a scripting rule, providing a very solid filtering functionality.
The register_match is a uniform way to report aspects about the matched code. User-
supplied Python code for writing matches must override register_match with their
logic (e.g. storing matches in a local database). The combine function is a convenience
function that can attach inherited position meta-variables to inherited non-position
meta-variables to give a more unified way to print messages about meta-variables.
Finally, the finalise function allows the output code to execute some code prior to
Coccinelle finishing. This is very useful when implementing a graphical user interface
that should not close before the user exits the program.

1Pycaml is available from http://pycaml.sourceforge.net.

http://pycaml.sourceforge.net

3.1. Scripting Coccinelle 31

@ script:scripting-language-identifier @

meta-variable-inheritance-list

@@

scripting-language-source-code

Listing 3.1: SmPL scripting rule structure

@ idfind @ identifier I; @@

I

@ script:python @ x << idfind.I; @@

print ’IDENTIFIER:’, x

Listing 3.2: SmPL scripting rule example for reporting a program’s identifiers

class Output:

def include_match(self, b):

pass

def register_match(self, include, messages):

self.include_match(include)

def combine(self, meta_variable, locations):

nmv = deepcopy(meta_variable)

nloc = [deepcopy(loc) for loc in locations]

nmv.location = nloc[0]

nmv.locations = nloc

return nmv

def finalise(self):

pass

Listing 3.3: Output class definition

We can now create a SmPL patch that filters some things away. An instance of the
Output class is available as cocci in the scripting rules. As we see in Listing 3.4, we
have the full expressive power of Python and we can even define functions inside the
scripting rule for automating tasks. Furthermore, we see the use of the Python code to
filter away matches we are certain of are bugs. By adding another rule that transform
the remaining matches to add bounds checking code, we can also use Coccinelle as a
hybrid analysis tool.

Selecting the output class can be done using the -pyoutput option for Coccinelle.
The actual output class can be anything that inherits from the Output class above, either
some of the built-in classes from coccilib or classes from user-defined Python code
that inherits from coccilib’s Output class.

32 Extending Coccinelle

@ bug exists @

type T; identifier I; expression E1, E2, E3; position p1, p2;

@@

T I[E1@p1];

<+... I[E2@p2] = E3; ...+>

@ script:python @

array_size << bug.E1; array_index << bug.E2;

p1 << bug.p1; p2 << bug.p2;

@@

def is_int(s):

try:

int(str(s))

return True

except:

return False

if is_int(array_size) and is_int(array_index) and

int(str(array_index)) >= int(str(array_size)):

cocci.include_match(False)

cocci.register_match(False,

[(p1[0], ’Definition of array’),

(p2[0], ’Buffer overflow’)])

else:

cocci.include_match(True)

Listing 3.4: Example SmPL filtering code using Python

The work described in this section has been used by Lawall et al. [2008] to find
numerous bugs in the Linux kernel.

3.1.1 Representing Coccinelle meta-variables

Given the taxonomy elements that we described in Chapter 2 that we wish to match
using Coccinelle, we only really need to represent expressions and their positions in
the scripting rules. Rather than reconstruct an entire abstract syntax tree in Python,
we merely represent the expression meta-variables using the string representations
of their values and ‘attach’ the meta-variable to the Python object so it can pass this
back to OCaml code later on for further processing—we will use this to retrieve all
subexpressions of an expression later in this chapter. The representation of expression
meta-variables is shown in Listing 3.5.

The values of the position meta-variables are rather simple, namely just a filename
and a list of start and end lines and columns, so we do not need to carry around
the OCaml object for these as we can represent them entirely in Python. For ease of

3.2. Data flow analysis 33

class Expression:

def __init__(self, expr, repr):

self.expr = expr

self.repr = repr

def __str__(self):

return self.expr

Listing 3.5: Python class for representing expression meta-variables

using the positions in the Python code, we include the filename with each location
unlike the OCaml code that only has a single filename and a number of positions. The
representation for position meta-variables is shown in Listing 3.6.

3.2 Data flow analysis

While Coccinelle contains thorough features for analysing the control flow of a program,
it entirely lacks a mechanism for analysing the propagation of values in the control
flow graph. Being able to reason about data in a program is a necessity if we wish to be
able to find buffer overflows, as we have to both track the possible size of an array and
the possible values that the array is indexed with.

Before we opted to implement our data flow analysis directly in Coccinelle, we
considered a number of existing tools to provide data flow analysis information, among
others the GNU Compiler Collection (gcc), CIL, and clang.2 However, by using these
tools we would have had to figure out compilation flags for the source code (which are
not needed by Coccinelle), the source would need to be compiled with the respective
tool, and its output decoded into a format useful for Coccinelle. All this only for a
relatively small gain: not having to write a few choice data flow analyses (for clang we
would have had to develop as many analyses as only the general control flow graph
traversal was in place when we started our work). In general it would have been nice
had there been a common library for data flow analyses, but we have found nothing
mature that was publically available.

Due to the scope of this thesis, we will only integrate a single data flow analysis
into Coccinelle that allows us to reason about variable values. There are a number of
other data flow analyses that could be interesting to implement, in particular in an
effort to increase precision in the analysis we describe below, such as points-to analysis
to resolve what variables pointers point to [Ghiya and Hendren, 1998, Ghiya, 1998].

2The GNU Compiler Collection is available from http://gcc.gnu.org, CIL from http://manju.

cs.berkeley.edu/cil, and clang from http://clang.llvm.org.

http://gcc.gnu.org
http://manju.cs.berkeley.edu/cil
http://manju.cs.berkeley.edu/cil
http://clang.llvm.org

34 Extending Coccinelle

class Location:

def __init__(self, file, line, column, line_end, column_end):

self.file = file

self.line = line

self.column = column

self.line_end = line_end

self.column_end = column_end

Listing 3.6: Python class for representing position meta-variables

3.2.1 Generalised constant propagation

Estimating programvariable values has primarily been used in the context of optimising
compilers where e.g. constant propagation [Kildall, 1973] is often used to simplify a
program so it maymore easily fit into the availablemachine registers, and to prune dead
code by removing branches in the code that will never be taken. However, as computers
have gotten more powerful and an increasing need for (automatic) parallelisation and
better branch prediction has arisen, people have investigated and extended constant
propagation to compute ranges of possible values for variables rather than just constants.
These analyses are called anything from generalised constant propagation to value range
propagation or symbolic range propagation [Harrison, 1977, Blume and Eigenmann,
1996, Patterson, 1995, Verbrugge et al., 1996, Bae and Eigenmann, 2006]. Several people
have discovered, though, that generalised constant propagation is useful for more than
merely parallelising programs: it can also be used to locate bugs [Cousot and Cousot,
1977, Verbrugge et al., 1996, Xie et al., 2003].

The fundamental idea in generalised constant propagation is to assign a range [a; b]
to each program variable. This information can then be used to determine whether a
branch will always be taken, or whether an array is indexed beyond its range. Some
of the more advanced algorithms (the symbolic propagation algorithms) [Blume and
Eigenmann, 1996, Xie et al., 2003, Bae and Eigenmann, 2006] also track interdependent
ranges such as x ∶ [0; 20] ∧ y ≥ x and propagate these through the program. While
this may increase precision in some places, we do not consider it necessary to illustrate
the usefulness of Coccinelle as a means to find bugs.

The work that is most relevant for integrating into Coccinelle is the work of Ver-
brugge et al. [1996], which implements generalised constant propagation on a simplified
abstract syntax tree where goto statements have been eliminated [Erosa and Hendren,
1994] and preprocessor macros have been expanded. Thus, the only places they need
to iterate a fixpoint solution are in C’s loop constructs as opposed to programs with
goto statements intact that have to be iterated for all nodes in the control flow graph.
It is also worth noting that their iterative solution is merely an adaptation of reaching
definitions [Appel and Ginsburg, 1998, Chapter 17].

Verbrugge et al. [1996] describe three algorithms for generalised constant propaga-
tion, each with increased precision: intraprocedural analysis that makes worst-case
assumptions about function calls by setting all variables that have had their address

3.2. Data flow analysis 35

taken in a function and all global variables to [−∞;∞],3 intraprocedural analysis with
read/write sets that describe what global variables are assigned so only these need
to be set to [−∞;∞], and finally interprocedural analysis with read/write sets that is
context-sensitive in an effort to discard as little information as possible about ranges in
a function.

Now that we have briefly covered some of the background for generalised constant
propagation, we will look at our implementation of it for Coccinelle. We will create a
flow- and path-sensitive data flow analysis based on the intraprocedural algorithmwith-
out read/write sets described by Verbrugge et al. [1996]. We will, however, implement
it on the full control flow graph representing a C program. While using read/write sets
or an interprocedural analysis would give us more accurate results, we will settle with
implementing the intraprocedural analysis as a proof of concept for using Coccinelle
to find data flow bugs.

Since we still have goto statements in our control flow graph, we must use the
adapted reaching definitions algorithm on our entire graph—this may cause the recom-
putation of elements that are not strictly necessary, but optimising this for performance
is beyond the scope of this thesis.4

Solving a flow equation on a control flow graph iteratively may mean that the result
never converges to a fixpoint due to loops, so to avoid looping infinitely, a step-up
solution is employed (also called widening/narrowing by Cousot and Cousot [1977])
that takes non-converging elements and steps them up to±∞, thus forcing convergence
at the loss of precision. Verbrugge et al. [1996] employs several step-ups if the number
of iterations exceeds some value n. We will settle with using two step-ups, one moving
the non-converging part(s) of the range to ±∞, e.g. if i is bound to [0; 10] in node n
on iteration k and to [0; 11] in node n on iteration k + 1 then we step it up to [0;∞],
and the second to step-up the range to [−∞;∞].

There are two places where information is generated for estimating variable value
ranges: in assignments, and in conditionals. Assignments naturally generate infor-
mation in that after the assignment ‘i = 0’ i will be bound to [0; 0]. To see that
conditionals generate information consider the conditional i ≥ 5 where i ∶ [0; 10]. In
the true-branch i will be bound as i ∶ [5; 10] and in the false-branch as i ∶ [0; 4].

We let ⊺ = [−∞;∞] and � indicate that we do not have any information about a
variable’s range yet. We define x ⊔ y as follows.

x ⊔ y =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⊺ if x = ⊺ ∨ y = ⊺
x if y = �
y if x = �
[min(a, c);max(b, d)] where x = [a; b] and y = [c; d]

3Strictly speaking then the [−∞;∞] notation may be at odds with mathematical notation where∞
cannot be inclusive in the range, however we will use∞ as the maximum value for the underlying type,
since the C Programming language’s simple integer and floating point types are all finite.

4If we did notwant to retain the source code as close to the original whenwe perform static analyses we
could employ the same goto elimination as described by Erosa and Hendren [1994], or the simplifications
employed by CIL [Necula et al., 2002].

36 Extending Coccinelle

Representing program variables using intervals requires that we define mappings
from the language’s operators to intervals. We formulate our data flow analysis using the
flow equation (3.1). This flow equation uses the function constrain that is inductively
defined over the possible C programming language constructs using a number of
likewise inductively defined auxiliary functions (3.2–3.4). The definition of constrain is
shown in (3.5). Also, gen and kill are used according to their definitions by Appel and
Ginsburg [1998]. For the sake of brevity, we have only shown a couple of the inductive
cases—the remaining cases are constructed similarly. Do note that some operations
will split the ranges in several, distinct ranges, e.g. n < 0 || n > 10, but we only ever
use one range for any variable, so we will lose precision here as we have to include the
values between 0 and 10 as well to represent the range of n.

in[n] = ⊔
p∈pred[n]

constrain(n, p, out[p])

out[n] = gen[n] ⊔ (in[n] − kill[n])
(3.1)

[a; b] ⊕ [c; d] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[a + b; c + d] if ⊕ ≡ +
[a;min(b, d) − 1] if ⊕ ≡< ∧min(b, d) = d
[a;min(b, d)] if ⊕ ≡< ∧min(b, d) ≠ d
[max(a, c); b] if ⊕ ≡≥
. . .

(3.2)

range(e , out[p]) =
e ≡ x ↦ [a; b] if (x, [a; b]) ∈ out[p]

↦ [−∞;∞] if (x, [a; b]) ∉ out[p]
e ≡ e1 >= e2 ↦ [a; b] ≥ [c; d] if [a; b] = range(e1, out[p])∧

[c; d] = range(e2, out[p])
. . . ↦ . . .

(3.3)

constrain′(e , n, p, out[p]) =
e ≡ x ↦ [a; b] ≠ [0; 0] if p → n = true ∧

[a; b] = range(x, out[p])
↦ [a; b] = [0; 0] if p → n = false ∧

[a; b] = range(x, out[p])
e ≡ e1 < e2 ↦ [a; b] < [c; d] if p → n = true ∧

[a; b] = range(e1, out[p])∧
[c; d] = range(e2, out[p])

↦ [a; b] ≥ [c; d] if p → n = false ∧
[a; b] = range(e1, out[p])∧
[c; d] = range(e2, out[p])

. . . ↦ . . .

(3.4)

3.2. Data flow analysis 37

constrain(n, p, out[p]) =
p ∶ e ↦ constrain′(e, n, p, out[p]) if p → n ∈ {true, false}
p ∶ ... ↦ out[p] in all other cases

(3.5)

As an example of using the equations, consider the very simple program frag-
ment ‘if (i < 20) a[i] = 20;’ where ‘i < 20’ is node 1 in a control flow graph
and ‘a[i] = 20;’ is node 2 and take out[1] to be i ∶ [0;∞]. Since 1 → 2 = true we
use constrain to find the value of out[2]. As node 2 is the child of a conditional we
use constrain′ to find the value of i. As we are in the true branch our result will be
[0;∞] < [20; 20] as the range of i is [0;∞] and the range of a constant is the single
element, namely [20; 20]. Using the equations from (3.2) we resolve this to be [0; 19],
arriving at the correct bounds of i.

Since our analysis is intraprocedural, we will have to make some pessimistic as-
sumptions about the function arguments to the function being analysed and global
variables, namely that theymust be ⊺ (this is the least accurate value we have). Function
calls will set all variables that have had their address taken to ⊺ as well.5 This loses a
lot of information that could be refined by using read/write sets or an interprocedural
analysis.

By only stepping up non-converging ranges twice, we can employ our implemen-
tation to locate the loop bounds for us rather than doing it explicitly like Verbrugge
et al. [1996]. However, this means that we lose the monotonicity property of the flow
equation, as a range may be subsequently constrained by a conditional (e.g. [0;∞]
may be constrained to [0; 19] by the conditional ‘i < 20’). Any such constraint will
only occur once for a binding in a node and only after the first widening; all other
operations will be monotonically increasing and the algorithm will thus terminate, but
run more inefficiently.6

As an example, consider the function in Listing 3.7. Its control flow graph is shown
in Figure 3.1 on page 39 and the result of the generalised constant propagation is shown
in Table 3.1 on page 40. We let the step-up max iteration count be 2 here for illustrative
purposes.7 This means that when i is not converging in nodes 4–6 after 2 iterations, we
step up the non-converging part of the range to∞. In the next iteration, i is constrained
to the size of the condition and in iteration 5 we have found the least fixpoint, which is
verified in iteration 6. Had iteration 6 not verified the fixpoint property, we would have
stepped up its non-converging ranges again and terminated the algorithm returning
these bounds. Also note that we do not get any information in node 7 until iteration
4 since we can statically ascertain that the branch will never be taken given the value
range of i we have inferred prior to this. Once the analysis finishes, it tells us that

5Strictly speaking a macro can change a variable even if the address of the variable has not been
taken. We make no provision for handling this case.

6In retrospect it would have been better to employ the multiple step-ups as suggested by Verbrugge
et al. [1996] and Cousot and Cousot [1977, §9.2] and avoid this issue entirely.

7In practice we will set it to a much larger value. Verbrugge et al. [1996] uses a max iteration count of
40.

38 Extending Coccinelle

buffer will be accessed with values in the range [0;19] that are all legal indices to
buffer (Node 5), and once we return, i will be 20 (Node 7).

We have implemented the generalised constant propagation algorithm in OCaml
and provide a function for the Python scripting rules that returns a range for a given
meta-variable, cocci.gcp(meta_var, position). This means that we can now con-
struct a simple example of finding buffer overflows using the generalised constant
propagation results. This is shown in Listing 3.8. For the full-fledged semantic patch,
there will of course be a requirement of better error reporting, but this should suffice
to illustrate how to use it.

3.3 Avoiding false positives in use-after-free

With the current features of Coccinelle and the extensions described in this chapter, we
have no way to detect whether an expression changes value between two occurrences.
In order to find use-after-free bugs (see §2.2.3), we can filter away matches where an
expression or any of its subexpressions are redefined between the two occurrences as
an approximation.

As an example, we can consider the false positive frommplayer that we identified
in Listing 2.9 on page 27. Using a Coccinelle isomorphism file, redef.iso, that makes
all types of redefinitions equivalent, the semantic patch in Listing 3.9 should stop the
false positive from being matched when both p1 and p2 are bound. However, running
the semantic patch still generates the false positive. This is caused by the fact that
Coccinelle represents the control flow graph at the statement level to be able to perform
structural transformations, so the increment code in the for loop is seen as belonging
to the for header and is thus not detected on the path from the free to the subsequent
use in the for check in the for header. This is illustrated in Figure 3.2.

In order to find bugs, we do not need to preserve the complete statements in
the control flow graph, but we can expand them to their expression components,
allowing us to match the redefinition on the path from the free to the possible use.
We accomplish this using the Python extensions developed earlier in the chapter to
create a hook into Coccinelle that can replace the control flow graph by invoking the
function cocci.set_expr_cfg() from a scripting rule. Using the expression-based
control flow graph, the for loop is represented as seen in Figure 3.3 where we explicitly
have a node for the increment code (incr) that can be matched by Coccinelle.

The second problem we face with matching use-after-free bugs is that we need
to ensure that not only the matched expression is not redefined from the free to the
use, but also that any subexpression of the expression is not redefined. While we
can, with some tricks, collect all subexpressions using Coccinelle rules, we will opt
to provide a Python function for decomposing an expression into its subexpressions,
cocci.get_subexpressions(expr), for clarity.

With these things in place we have enough features to detect use-after-free bugs
with most false positives filtered away. The full pattern will be explained in §3.5.3, but
an example can be seen in Listing 3.14 on page 50.

3.3. Avoiding false positives in use-after-free 39

void foo(int init) {

int buffer[20];

for (int i = 0; i < 20; ++i) {

buffer[i] = init;

}

}

Listing 3.7: Simple loop

1 ∶ void foo(int init) {

2 ∶ int buffer[20]

3 ∶ int i = 0

4 ∶ i < 20

5 ∶ buffer[i] = init

6 ∶++i

7 ∶ exit

true

false

Figure 3.1: Control flow graph for Listing 3.7

40 Extending Coccinelle

iteration 1 iteration 2 iteration 3
n in[n] out[n] in[n] out[n] in[n] out[n]

1 init:⊺ init:⊺ init:⊺

2 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:� buffer:� buffer:�

3 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:� buffer:� buffer:� buffer:� buffer:� buffer:�

i:[0;0] i:[0;0] i:[0;0]

4 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:� buffer:� buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺
i:[0;0] i:[0;0] i:[0;1] i:[0;1] i:[0;2] i:[0;∞]

5 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:� buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺
i:[0;0] i:[0;0] i:[0;1] i:[0;1] i:[0;2] i:[0;∞]

6 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺
i:[0;0] i:[1;1] i:[0;1] i:[1;2] i:[0;2] i:[1;∞]

7

iteration 4 iteration 5 iteration 6
n in[n] out[n] in[n] out[n] in[n] out[n]

1 init:⊺ init:⊺ init:⊺

2 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:� buffer:� buffer:�

3 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:� buffer:� buffer:� buffer:� buffer:� buffer:�

i:[0;0] i:[0;0] i:[0;0]

4 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺
i:[0;∞] i:[0;∞] i:[0;20] i:[0;20] i:[0;20] i:[0;20]

5 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺
i:[0;19] i:[0;19] i:[0;19] i:[0;19] i:[0;19] i:[0;19]

6 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺
i:[0;19] i:[1;20] i:[0;19] i:[1;20] i:[0;19] i:[1;20]

7 init:⊺ init:⊺ init:⊺ init:⊺ init:⊺ init:⊺
buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺ buffer:⊺
i:[20;∞] i:[20;∞] i:[20;20] i:[20;20] i:[20;20] i:[20;20]

Table 3.1: Example generalised constant propagation flow for Figure 3.1 with m = 2

3.3. Avoiding false positives in use-after-free 41

@ bug exists @

type T; identifier I; expression E1, E2;

position p1, p2;

@@

T I[E1@p1];

<+... I[E2@p2] ...+>

@ script:python @

size_pos << bug.p1; size_var << bug.E1;

indx_pos << bug.p2; indx_var << bug.E2;

@@

size = cocci.combine(size_var, size_pos)

indx = cocci.combine(indx_var, indx_pos)

size_r = cocci.gcp(size, size_pos)

indx_r = cocci.gcp(indx, indx_pos)

if size_r.is_bottom() or indx_r.is_bottom():

print ’Undefined variable in use’

elif size_r.is_top() or indx_r.is_top():

print ’Possible buffer overflow. Check.’

elif indx_r.max() >= size_r.min():

print ’Buffer overflow.’

Listing 3.8: SmPL patch using generalised constant propagation information

@ bug using "../../redef.iso" exists @

expression E, E2; position p1, p2;

@@

free@p1(chain->arStreamCaps[i]);

...

(

chain->arStreamCaps[i] = E

|

chain->arStreamCaps = E

|

chain = E

|

i = E

|

chain->arStreamCaps[i]@p2

)

Listing 3.9: Trying to avoid matching the mplayer false positive

42 Extending Coccinelle

for (init; check; incr)

fortrue

body

forfall

forend

true

false

Figure 3.2: Coccinelle’s control flow graph for a for loop

init

check

body

incr

true

false

Figure 3.3: Expanded control flow graph for a for loop

3.4. Functions provided for Python by Coccinelle 43

3.4 Functions provided for Python by Coccinelle

For completeness’ sake, this section contains a listing of all the functions that we have
provided for the scripting rules to use to communicate with Coccinelle. All these
functions are members of the default cocci instance.

include_match(t): The value of t indicates whether the currently matched environ-
ment is kept for further processing in later rules. The function may be called any
number of times during the course of a scripting rule; only the argument of the
last call decides whether the environment is kept.

set_expr_cfg(): This function changes from the statement-based control flow graph
to the expression-based control flow graph described in §3.3. There is currently
no converse function, but providing one in the future should be trivial.

print_cfg(prefix): Writes a GraphViz file to the file prefixN.dot where N is an in-
creasing number that is unique for a single run of Coccinelle. The prefixN.dot file
is furthermore compiled to prefixN.dot.ps. This function requires that GraphViz
be installed on the system.

get_subexpressions(expr_repr): This function retrieves a list of all subexpressions,
represented as strings, to a given Coccinelle expression meta-variable (the Coc-
cinelle expression meta-variable is attached to a Python expression as the .repr
member variable).

gcp(expr_repr, pos_repr): This function computes the range that expr_posmay
be at the pos_repr location in the program. This is described in detail in §3.2.

3.5 Completing the taxonomy elements

In Figure 3.4, we present the overview of taxonomy elements from Chapter 2 with
references to sections and pages in this chapter. For each of the taxonomy elements in
this chapter we will merely give the details for matching the bugs, i.e. the full semantic
patch and other details such as the need for multiple executions of Coccinelle.

3.5.1 Stack-based buffer overflow

Using the generalised constant propagation (see §3.2) on the expression-based control
flow graph (see §3.3) we can locate possible stack-based buffer overflows using the
SmPL patch in Listing 3.10.

There are some cases where we get false positives from this even when the gener-
alised constant propagation successfully determines a bound, namely the cases where
an array can have two or more sizes in one function, and two uses have different upper
bounds where one is larger than the minimum of the two possible sizes of the array.8
We make no provision for catching these.

8We have not observed any cases where this is a problem in all the code we have analysed, though.

44 Extending Coccinelle

@ bug exists @

type T; identifier I, fld; expression E1, E2;

position p1, p2;

@@

T I[E1@p1];

<+...

(

I[E2@p2]

|

*(I + E2@p2)

)

...+>

@ script:python @

@@

cocci.set_expr_cfg()

cocci.print_cfg()

cocci.include_match(True)

@ script:python @

e1 << bug.E1; e2 << bug.E2;

p1 << bug.p1; p2 << bug.p2;

@@

cocci.print_cfg()

print p1[0].file, p1[0].line, p1[0].column

array_size = cocci.gcp(e1.repr, p1[0].repr)

print ’ array_size:’, array_size

print p2[0].file, p2[0].line, p2[0].column

array_index = cocci.gcp(e2.repr, p2[0].repr)

print ’ array_index:’, array_index

if array_size.is_bottom() or array_index.is_bottom():

cocci.register_match(True, [(p1[0], ’May be used

uninitialised’), (p2[0], ’May be used uninitialised’)

])

elif array_size.is_top() or array_index.is_top():

cocci.register_match(True, [(p1[0], ’Array declaration.

Size: %s’ % array_size), (p2[0], ’Buffer use. May be

used outside bounds: %s’ % array_index)])

elif array_index.max() >= array_size.min():

cocci.register_match(True, [(p1[0], ’Array declaration,

size: %s’ % array_size), (p2[0], ’Array use. May be

outside bounds: %s’ % array_index)])

Listing 3.10: SmPL patch for matching and reporting stack-based buffer overflows

3.5. Completing the taxonomy elements 45

633: Weaknesses that affect memory

120: Unbounded transfer (‘classic buffer overflow’)

121: Stack-based buffer overflow — §3.5.1, page 43

122: Heap-based buffer overflow — §3.5.2, page 45

416: Use after free — §3.5.3, page 45

Figure 3.4: Taxonomy element structure

3.5.2 Heap-based buffer overflow

The semantic patch for matching heap-based buffer overflows, shown in Listing 3.11,
is almost identical to the stack-based one. The only difference is the use of allocation
functions rather than a statically defined array.

In order to compute the size of the arraywemust know the argument to the function
that signifies the size of the returned buffer, E1 in the case of malloc and kmalloc. The
script would need to be adapted to e.g. calloc that uses two arguments to compute
the size of the returned buffer. We only consider allocation functions where the first
and only argument provides the size of the buffer.

3.5.3 Use after free

Matching use-after-free bugswill be done in two steps: first we find all places where there
is a use after free, regardless of whether there is a redefinition of the freed expression
or its subexpressions, and subsequently we test each of these places for whether there
is a redefinition.

The first step, shown in Listing 3.12, can be done using the regular statement-based
control flow graph, which may be faster since the control flow graph contains fewer
nodes as each expression does not occupy a node in the graph.9 Once a possible use
after free location is matched, a new semantic patch is generated that will be used in
the second step. This new semantic patch is generated from the template in Listing 3.13
where the different subexpressions are expanded into the ‘[REDEF]’ placeholder and the
code and location are expanded into the remaining ‘[...]’ placeholders to ensure that
the semantic patch only matches at the specific location that has been found (otherwise
we could generate false positives by matching unrelated potential uses after free). For
each match in step one, a line with the relevant file-name and generated semantic patch
file-name is written to bugs/useafterfree.bug and by running each of these patches,
we will find a closer count of the number of use-after-free bugs. Running all of these
matches can easily be automated with a simple script.

9In practice we did not observe any significant difference betweenmatching using the statement-based
control flow graph and the expression-based control flow graph.

46 Extending Coccinelle

@ bug exists @

type T; identifier I; expression E1, E2, E3;

position p1, p2;

@@

T* I;

...

(

I = malloc(E1@p1);

|

I = kmalloc(E1@p2);

)

<+... when != I = E3

(

I[E2@p2]

|

*(I + E2@p2)

)

...+>

@ script:python @

e1 << bug.E1; e2 << bug.E2;

p1 << bug.p1; p2 << bug.p2;

@@

cocci.set_expr_cfg()

array_size = cocci.gcp(e1, p1)

array_index = cocci.gcp(e2, p2)

if array_size.is_bottom() or array_index.is_bottom():

cocci.register_match(True, [(p1[0], ’May be used

uninitialised’), (p2[0], ’May be used uninitialised’)

])

elif array_size.is_top() or array_index.is_top():

cocci.register_match(True, [(p1[0], ’Array declaration.

Size may be unknown.’), (p2[0], ’Buffer use. May be

used outside bounds, unable to verify.’)])

elif array_index.max() >= array_size.min():

cocci.register_match(True, [(p1[0], ’Array declaration’),

(p2[0], ’Array use. May be outside bounds.’)])

Listing 3.11: SmPL patch for matching and reporting heap-based buffer overflows

3.5. Completing the taxonomy elements 47

@ bug exists @

expression E; position p1, p2;

@@

(

free@p1(E);

|

kfree@p1(E);

)

...

E@p2

@ script:python @

e << bug.E; p1 << bug.p1; p2 << bug.p2;

@@

from tempfile import mkstemp

from os import write, close

template = open(’bugs/useafterfree.templ’, ’r’)

content = ’’.join(template.readlines())

template.close()

subexpr = [e] + cocci.get_subexpressions(e.repr)

redef = [str(x) + " = E" for x in subexpr]

p1 = p1[0] # only use principal location

p2 = p2[0] # ditto

content = content.replace(’[EXPR]’, str(e))

content = content.replace(’[REDEF]’, ’\n|\n ’.join(redef))

content = content.replace(’[P1:FILE]’, p1.file)

content = content.replace(’[P1:LINE]’, p1.line)

content = content.replace(’[P1:COLUMN]’, p1.column)

content = content.replace(’[P2:FILE]’, p2.file)

content = content.replace(’[P2:LINE]’, p2.line)

content = content.replace(’[P2:COLUMN]’, p2.column)

f, p = mkstemp(’.cocci’, ’uaf’, ’bugs/tmp’)

write(f, content)

close(f)

scr = open(’bugs/useafterfree.bug’, ’a’)

scr.write(’-cocci_file %s %s\n’ % (p, p1.file)) # batch file

scr.close()

Listing 3.12: Finding all use-after-free locations

48 Extending Coccinelle

When expanded with the information from the first step (an example of this is
shown in Listing 3.14), each semantic patch using the template shown in Listing 3.13
is structured to use the expression-based control flow graph and to discard the cases
where the matched expression or any of its subexpressions are redefined between the
free and the use.

This brings the number of false positives down, but there are still several kinds
of false positives that remain, e.g. when the expression freed subsequently is the
argument of an allocation-function that takes the address of the variable as an ar-
gument—this can be seen in /arch/ia64/sn/kernel/xpc_channel.c in the Linux-
2.6 kernel where the freed expression, ch->local_msgqueue_base is later passed to
xpc_kzalloc_cacheline_aligned as &ch->local_msgqueue_base, and its value is
set inside the called function. Since we use Coccinelle as an intraprocedural analysis
tool, we have no way to detect these cases automatically.

3.5. Completing the taxonomy elements 49

@ script:python @ @@

cocci.set_expr_cfg()

cocci.include_match(True)

@ bug using "../../redef.iso" exists @

expression E1, E;

position p1, p2;

@@

(

free@p1(E1);

|

kfree@p1(E1);

)

...

(

[REDEF]

|

E1@p2

)

@ script:python @

e << bug.E1; p1 << bug.p1; p2 << bug.p2;

@@

p1 = p1[0]

p2 = p2[0]

if str(e) == ’[EXPR]’ and p1.file == ’[P1:FILE]’ and

p1.line == ’[P1:LINE]’ and p1.column == ’[P1:COLUMN]’ and

p2.file == ’[P2:FILE]’ and p2.line == ’[P2:LINE]’

and p2.column == ’[P2:COLUMN]’:

cocci.register_match(True, [(p1, ’Free’), (p2, ’Use’)])

Listing 3.13: Template for finding faulty use-after-free locations

50 Extending Coccinelle

@ script:python @ @@

cocci.set_expr_cfg()

cocci.include_match(True)

@ bug using "../../redef.iso" exists @

expression E1, E;

position p1, p2;

@@

(

free@p1(E1);

|

kfree@p1(E1);

)

...

(

pInfo->rx_buf = E

|

pInfo = E

|

E1@p2

)

@ script:python @

e << bug.E1; p1 << bug.p1; p2 << bug.p2;

@@

p1 = p1[0]

p2 = p2[0]

if str(e) == ’pInfo->rx_buf’ and

p1.file == ’linux-2.6/drivers/char/n_r3964.c’ and

p1.line == ’1059’ and p1.column == ’1’ and

p2.file == ’linux-2.6/drivers/char/n_r3964.c’ and

p2.line == ’1060’ and p2.column == ’42’:

cocci.register_match(True, [(p1, ’Free’), (p2, ’Use’)])

Listing 3.14: Expanded example template for matching use-after-free bugs

Chapter 4

Results

As mentioned in Chapter 1, Coccinelle has been designed and tested primarily with the
Linux kernel, and this is also where we will keep our focus in testing our extensions.
However, in an effort to investigate Coccinelle’s usefulness on other code-bases as
well, we will apply it to two Internet application servers, tbaMUD and Icecast. These
programs will be described in §4.3.

In this chapter, we will first investigate a number of constructed program fragments
in order to illustrate the strengths and weaknesses of our approach. Subsequently, we
will apply the semantic patches developed in Chapter 3 to the Linux 2.6 kernel, tbaMUD
and Icecast, and for each project describe the bugs found and explain the false positives
and what steps, if any, we can take to remedy them in future work.

4.1 Investigating the results of our extensions

Before we investigate the effectiveness of our results on real-world code, it seems
prudent to subject them to some scrutiny to see what we can expect to work and what
we cannot expect to work. This will also make it easier to understand why we may fail
at finding issues in real-world code.

4.1.1 Buffer overflows

Buffer overflows on the stack are usually the worst as they potentially allow an attacker
to overwrite the return address pointer, making it possible for the attacker to redirect
the program’s control flow to his own code. There are several ways that buffers are used
that we cannot match using Coccinelle in the way that we have structured our SmPL
patches.

At the very simplest, buffer overflows are typically caused by a programmermaking
an off-by-one error. An example of this is shown in Listing 4.1, where the comparison
in line 5 should be a strict less-than comparison rather than less-than-or-equal, since
we will be indexing one past the bounds of the array in line 6 in the last iteration
otherwise. The result of running Coccinelle with our extensions is shown in Figure 4.1.

Many programs move the size of the buffers into a global constant to maintain
consistency across the codebase, as shown in Listing 4.2. For this purpose we also scan
and collect all global constants as part of the generalised constant propagation, as this
allows us to more accurately state whether there is a bug or not.

However, this is where the ease of scanning for buffer overflows ends as there are
many different places where arrays can be declared in program code, which influences

51

52 Results

1 void f() {

2 int buffer[20];

3 int i;

4
5 for (i = 0; i <= 20; ++i)

6 buffer[i] = i;

7 }

Listing 4.1: Simple stack-based buffer overflow

> ./runspatch.opt -cocci_file stackbuffer.cocci results/sbo1.c

results/sbo1.c:2:13: Array declaration, size: [20;20]

results/sbo1.c:6:11: Array use: [0;20]. May be outside bounds.

Figure 4.1: Stack-based buffer overflow for Listing 4.1

1 #define MAX_SIZE 25

2
3 void f() {

4 int buffer[MAX_SIZE];

5 int i;

6
7 for (i = 0; i <= MAX_SIZE; ++i)

8 buffer[i] = i;

9 }

Listing 4.2: Simple stack-based buffer overflow with global constant size

how a semantic patch might match it. Just moving the array outside the function as
illustrated in Listing 4.3 causes our semantic patch not to match anything anymore. To
find these we could create a two-part semantic match as shown in Listing 4.4, where we
first search for all buffer definitions and then for all the uses of this buffer, and finally
run our generalised constant propagation algorithm on the matched locations.

ISO/IEC 9899:1999 does, however, also allow one to create arrays of incomplete
type (and thus with unknown size), e.g. ‘int buf[]’ that can be initialised with an
initialiser list and that obtain the size of the largest index value used in the initialiser
list [ISO/IEC 9899:1999, §6.7.8]. This is shown in Listing 4.5 where buf is defined to be
of size 6 and buf2 is defined to be of size 11 with only three of its indices having been
defined. None of our previously presented semantic patches support matching these
buffer declarations. SmPL does not support matching values inside the initialiser lists
and while we could match incompletely typed arrays, a meta-variable would never be
bound to its size and we would have no expression to hand to the generalised constant
propagation to evaluate the size of the array. We can, of course, extend our algorithm to
be able to compute the size of these arrays, but we will leave that as a future extension.

4.1. Investigating the results of our extensions 53

1 #define MAX_SLOTS 20

2 static int foo[MAX_SLOTS];

3
4 int main() {

5 foo[20] = 20;

6 }

Listing 4.3: Buffer overflow in global buffer

@ str @ type T; identifier I; expression E1; position p1; @@

T I[E1@p1];

@ bug exists @

identifier str.I; expression E2; position p2;

@@

I[E2@p2]

@ script:python @ @@

cocci.set_expr_cfg()

cocci.include_match(True)

@ script:python @

e1 << str.E1; e2 << bug.E2;

p1 << str.p1; p2 << bug.p2;

@@

import coccilib

array_size = cocci.gcp(e1.repr, p1[0].repr)

array_index = cocci.gcp(e2.repr, p2[0].repr)

if array_size.is_bottom() or array_index.is_bottom():

cocci.register_match(True, [(p1[0], ’May be used

uninitialised’), (p2[0], ’May be used uninitialised’)

])

elif array_size.is_top() or array_index.is_top():

cocci.register_match(True, [(p1[0], ’Array declaration.

Size: %s’ % array_size), (p2[0], ’Array use: %s. May

be used outside bounds.’ % array_index)])

elif array_index.max() >= array_size.min() or

array_index.min() < coccilib.range.zero:

cocci.register_match(True, [(p1[0], ’Array declaration.

Size: %s’ % array_size), (p2[0], ’Array use: %s. May

be outside bounds.’ % array_index)])

Listing 4.4: Global buffer semantic match

54 Results

int buf[] = { 0, 1, 2, 3, 4, 5 };

int buf2[] = {

[0] = 0,

[10] = 3,

[5] = 4

};

int main() {

buf[6] = 6;

buf2[11] = 12;

}

Listing 4.5: Buffer overflow in global array with initialiser

The different places that arrays can be defined in C do, of course, not end here,
as arrays can also be declared inside structs and inside unions, and nested in these
to arbitrary depths. One of the simplest such definitions is shown in Listing 4.6. We
can then create a semantic patch that can match array definitions inside structs and
subsequent uses of them, as shown in Listing 4.7. Consider, though, the program in
Listing 4.8, where we no longer have a definition of a variable with the struct type it
is contained in. We could, of course, create a semantic patch that matches any array
definition at any level and then any field use with this identifier, e.g. ‘...->I[E2@p2]’,
however, we can easily consider two different structs with the same field name and
each of these will be matched wrongly, providing a lot more false positives than we
would care for.

Even though we might be able to catch a few more actual bugs using the semantic
patches in Listing 4.4 and 4.7, the inaccuracy of the generalised constant propagation
is already giving us a huge number of false positives, so we will limit ourselves to using
the semantic patch shown in Chapter 3.

Finally, there are also the heap-based buffer overflows that we have not dealt with
up until this point. The way that e.g. malloc works is by allocating a contiguous
block of bytes to the caller, and thus the caller needs to specify the exact byte count
needed at the point of allocation. This means that for anything apart from char arrays,
malloc will be invoked with the sizeof expression that determines the size of a given
type or expression on the specific platform that is being compiled for. Since we have
chosen to only assign a single range to a given variable using our generalised constant
propagation algorithm, it becomes impossible to assign anything but [−∞;∞] when a
sizeof expression is part of the term as its size is implementation specific.

As a remedy for this, we have considered filtering out all sizeof expressions in
allocation functions, but the number of possible permutations for where it may occur
is nearly endless (although in practice it will probably be more limited) that making
semantic patches for these cases seems unnecessarily complex. The proper solution
would be to create a full symbolic propagation algorithm for Coccinelle, but due to

4.1. Investigating the results of our extensions 55

struct s {

int data[20];

};

void bar() {

struct s x;

x.data[20] = 22;

}

Listing 4.6: Buffer overflow in array defined in a struct

time constraints we will not pursue this solution. We will instead, sadly, omit matching
buffer overflows that use values that have been allocated by malloc, etc., in this thesis.1

4.1.2 Use-after-free

One of the simplest mistakes that triggers a use-after-free bug is to free a structure first
and then its members subsequently; this is shown in Listing 4.9 where x is freed in
line 7 and is subsequently used in line 8. This may deallocate memory that no longer
points to the expected value, potentially opening up an avenue of attack for a malicious
user. Running our use-after-free SmPL patch on the example produces the output in
Figure 4.2.

This example is, however, already matched by Coccinelle without any of our exten-
sions. The places where our extensions make a difference are in the for and while-loops
of C programs, as illustrated in Listing 4.10. Using the semantic match with Coccinelle
without our expression-based control flow graph results in a bug being reported, while
enabling our extensions removes this false positive. This is shown in Figure 4.3.

There are, however, interprocedural cases of use-after-free that we cannot hope to
match. This is shown in Listing 4.12. If we call send_to_all in an expectation to send
our buffer data to everyone who is connected to the server, then if someone has lost
connection send will fail in send_to_client, line 4, and the buffer will be released in
line 5 and the function returns to send_to_all. However, send_to_all fails to check
the return value and proceeds to use the buffer if more clients are connected.2 This
means that each interprocedural use-after-free will give us a false negative, i.e. it is a
flaw, but we will not be able to report it.3

One of the more unfortunate false positives we have is due to people printing the
address of something that has just been freed, or using it in a conditional test as seen
in Listing 4.11. While the subsequent use of a variable might be risky, it is not a bug

1Alternatively we could always consider the result of sizeof to be 1, but this will not support the
construct ‘sizeof(array)/sizeof(array[0])’ that is often used in the kernel.

2This is, of course, a bad program design, since the data might only get to the n first clients until we
meet one that has lost connection, but much worse has probably seen the light of day in production code.

3Functions that free one or more arguments on some paths occur frequently in the Linux kernel. A
work-around to matching them would be to create specialised semantic patches that enumerate these
functions, but we will make no effort to do so in this thesis.

56 Results

@ str @ type T; identifier S, I; expression E1; position p1; @@

struct S {

...

T I[E1@p1];

...

};

@ bug exists @

identifier str.S, str.I, v; expression E2; position p2;

@@

struct S v;

...

v.I[E2@p2]

@ script:python @ @@

cocci.set_expr_cfg()

cocci.include_match(True)

@ script:python @

e1 << str.E1; e2 << bug.E2;

p1 << str.p1; p2 << bug.p2;

@@

array_size = cocci.gcp(e1.repr, p1[0].repr)

array_index = cocci.gcp(e2.repr, p2[0].repr)

if array_size.is_bottom() or array_index.is_bottom():

cocci.register_match(True, [(p1[0], ’May be used

uninitialised’), (p2[0], ’May be used uninitialised’)

])

elif array_size.is_top() or array_index.is_top():

cocci.register_match(True, [(p1[0], ’Array declaration.

Size: %s’ % array_size), (p2[0], ’Buffer use. May be

used outside bounds: %s’ % array_index)])

elif array_index.max() >= array_size.min() or array_index.min()

< range.zero:

cocci.register_match(True, [(p1[0], ’Array declaration.

Size: %s’ % array_size), (p2[0], ’Array use. May be

outside bounds: %s’ % array_index)])

Listing 4.7: Struct-defined buffer semantic match

> ./runspatch.opt -cocci_file uaf.cocci results/uaf1.c

results/uaf1.c:7:4: Free

results/uaf1.c:8:9: Use

Figure 4.2: Use-after-free results for Listing 4.9 and 4.11

4.1. Investigating the results of our extensions 57

struct q {

struct {

int data[20];

} x;

};

int main() {

struct q x;

x.x.data[20] = 22;

}

Listing 4.8: Buffer overflow in array defined in a nested struct

1 struct s {

2 int* data;

3 };

4
5 void do_free(struct s* x) {

6 if (x) {

7 free(x);

8 free(x->data);

9 }

10 }

Listing 4.9: Simple use-after-free error with structs

1 void do_free(struct s* x) {

2 int i;

3
4 for (i = 0; i < x->len; ++i) {

5 free(x->data[i]);

6 }

7 }

Listing 4.10: Use-after-free in a loop

> ./runspatch.opt -cocci_file uaf-orig.cocci results/uaf3.c

results/uaf3.c:5:4: Free

results/uaf3.c:5:9: Use

> ./runspatch.opt -cocci_file uaf.cocci results/uaf3.c

Figure 4.3: Use-after-free results for Listing 4.10

58 Results

unless the memory it points to is used. There is no way to avoid this false positive with
Coccinelle other than to exhaustively enumerate all cases where a use of the variable is
not a use of the memory.

Lastly, we do not remove infeasible paths when we perform a match. This means
that e.g. the code in Listing 4.13 will generate a false positive as it will not track that if
we free b then res will never be 0 in line 9, and thus we will never use it in line 10. As
Coccinelle does not currently support infeasible path pruning, every case of program
construction like this will generate a false positive. We can verify this by running our
SmPL patch on the code. This is shown in Figure 4.4.

4.2 Linux 2.6

We will run our semantic patches on the Linux kernel 2.6 at commit ID baadac8b-

10c5ac15ce3d26b68fa266c8889b163f from the 11th of March 2008 in an effort to find
bugs in real-world code.4 This is a development version for the Linux 2.6.25 kernel and
also the same version that was used by Lawall et al. [2008] for their results.

The great benefit of analysing Linux is that it is big and sees a continuous flurry of
development activity, which means that if one looks at enough places, one is bound to
uncover a bug sooner or later. We will exclusively look at the results and not the time it
takes to run the semantic patches.5

4.2.1 Buffer overflows

As §4.1.1 indicated, finding buffer overflows by analysing a non-simplified control flow
graph is difficult, and while it is not entirely unexpected, some of our implementation
choices result in less than stellar results when it comes to finding buffer overflows
in the kernel. Our overall results are presented in Table 4.1, where the 8 undecided
cases are code fragments that were extremely complicated so we gave up trying to
categorise them. The success rate of 0.2% that we have achieved is unequivocally, rather
bad.6 Rather than dwell on this, we will first look at the actual bug we have found
and subsequently look at some of the cases where we fail to discard the false positive
in an effort to provide means for a future strengthening of the generalised constant
propagation algorithm.

The bug we have found is located in arch/alpha/boot/main.c and is a classical off-
by-one error. The relevant code is shown in Listing 4.14, where ‘...’ is used to signify
irrelevant code. Here callback_getenv fills up to and including sizeof(envval)

bytes into envval and returns this count. This means that nbytes can potentially be
sizeof(envval) when the null terminator is written, thus overflowing envval. The

4Available from http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=

commit;h=baadac8b10c5ac15ce3d26b68fa266c8889b163f.
5As a point of interest, analysing the entire Linux kernel with our use-after-free semantic patch takes

about 6 hours on our old AMD Sempron 1.6 GHz processor with 1 GB RAM.
6Do note that the success rate is only concerned with false positives and does not take false negatives

into account.

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=baadac8b10c5ac15ce3d26b68fa266c8889b163f
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=baadac8b10c5ac15ce3d26b68fa266c8889b163f

4.2. Linux 2.6 59

1 void do_free(struct s* x) {

2 struct foo* y;

3
4 if (x) {

5 free(x);

6
7 for (y = global_list; global_list; ++y)

8 if (y->data == x)

9 y->data = NULL;

10 }

11 }

Listing 4.11: Simple use-after-free error when freeing list member

1 int send_to_client(struct client* c, struct buffer* b) {

2 int sent = 0;

3
4 if ((sent = send(c->socket, b->data, b->length, 0)) == -1) {

5 free_buffer(b);

6 return -1;

7 }

8
9 return sent;

10 }

11
12 void send_to_all(struct buffer* b) {

13 struct client* c;

14
15 for (c = clients; c; c = c->next)

16 send_to_client(c, b);

17 }

Listing 4.12: Interprocedural use-after-free

> ./runspatch.opt -cocci_file uaf.cocci results/uaf5.c

results/uaf5.c:6:4: Free

results/uaf5.c:11:22: Use

Figure 4.4: Use-after-free results for Listing 4.13

Bugs found 1
False positives found 496
Undecided 8

Success rate 0.2%

Table 4.1: Success rates for finding buffer overflows in Linux 2.6

60 Results

1
2 int send_data(struct client* c, struct buffer* b) {

3 int ret = 0;

4
5 if (!c->is_connected) {

6 free_buffer(b);

7 ret = -1;

8 }

9
10 if (ret == 0) {

11 send_to_client(c, b);

12 }

13
14 return ret;

15 }

Listing 4.13: Infeasible path use-after-free false positive

likeliness of an exploit here is extremely low as envval is filled with data that is given
as options to the bootloader, e.g. LILO, and while start_kernel does not check the
size correctly, callback_getenv presumably does, so there will only be the possibility
of having an extra zero written one past the bound. The code for callback_getenv is
not part of the kernel but provided by the alpha architecture, but given the other uses
of it where the check is ‘nbytes < 0 || nbytes >= sizeof(envval)’, we postulate
that this use is faulty.

There are, though, a lot more false positives that primarily are the result of sim-
plifications we made in our implementation of the generalised constant propagation
algorithm. When copying data from user-space to kernel-space, a typical program
fragment is shown in Listing 4.15 where the intervals to the right indicate the value
range of count on that line. As a function argument, we will pessimistically assign it
the range [−∞;∞], which results in our first mistake since size_t is an unsigned type,
so [0;∞] would have been a more appropriate range. Our second mistake then comes
from not representing count as a local variable (function parameters are represented at
the same level as global variables), causing it to be widened to [−∞;∞] again due to the
function call in line 12. Had we properly made count a local variable then this widening
would not have taken place, but without an extension to consider the unsignedness of
the variable, we would have had the interval [−∞; 39] in line 15, and thus would still
have had to report a buffer underrun and not a buffer overflow.

Another simplification we made was not to handle enumeration constants that,
unfortunately, seem to be used quite frequently in the kernel. An example of this is
shown in Listing 4.16 where the size of PORT_NUM_EVENTS will not be set and as such
it will be set to [−∞;∞], and thus k will be assigned the interval [0;∞] in line 17.
Since PORT_NUM_EVENTS is assigned [−∞;∞] the code will be flagged for investigation.
We should be able to introduce this computation in the same manner as other global
constant values, potentially eliminating a long list of false positives.

4.2. Linux 2.6 61

void start_kernel(void) {

...

int nbytes;

char envval[256];

...

nbytes = callback_getenv(ENV_BOOTED_OSFLAGS,

envval, sizeof(envval));

if (nbytes < 0) {

nbytes = 0;

}

envval[nbytes] = ’\0’;

...

}

Listing 4.14: arch/alpha/boot/main.c buffer overflow bug in Linux 2.6

1 static int parse_number(

2 const char __user *p,

3 size_t count, [−∞;∞]
4 unsigned long *val)

5 {

6 char buf[40];

7 char *end;

8
9 if (count > 39) [−∞;∞]
10 return -EINVAL; [40;∞]
11
12 if (copy_from_user(buf, p, count)) [−∞; 39]
13 return -EFAULT; [−∞;∞]
14
15 buf[count] = 0; [−∞;∞]
16
17 ...

18 }

Listing 4.15: False positive when copying from user-space to kernel-space

62 Results

1 enum port_event {

2 ...

3 PORT_NUM_EVENTS = 5,

4 };

5
6 ...

7
8 int sas_register_phys(struct sas_ha_struct *sas_ha) {

9 ...

10
11 static const work_func_t sas_port_event_fns[PORT_NUM_EVENTS] =

{ ... };

12
13 ...

14
15 for (k = 0; k < PORT_NUM_EVENTS; k++) {

16 INIT_WORK(&phy->port_events[k].work,

17 sas_port_event_fns[k]);

18 phy->port_events[k].phy = phy;

19 }

20
21 ...

22 }

Listing 4.16: False positive when using enumerations

Our decision to not support the bitwise operators in C for intervals (by widening
them to [−∞;∞] when encountered) is the last issue that causes a long list of false
positives. The bitwise and in line 9 of Listing 4.17 will ensure that bit is in the interval
[0; 63] and when that is shifted right 4 places in line 10, hash_table will only be
indexed with values in the range [0; 3], which falls inside the size of the array.

While most of these omissions make our results seem rather more abysmal than
strictly necessary, we do have the means of strengthening the results by addressing
the above-mentioned shortcomings. It is also worth noticing that our lack of finding
intraprocedural buffer overflows might as well be attributed to the fact that few buffer
overflows that occur in the kernel are intraprocedural (see e.g. §5.1 on page 75).

4.2.2 Use-after-free

The use-after-free bugs are, however, handled better by our extensions. Our results are
presented in Table 4.2, and the false positives have furthermore been broken down in
Table 4.3. The interprocedural cases are code-sites where the address of a variable is
passed to a function that allocates it inside that function. The path prune code-sites
are cases where the branch of code that causes the bug will never be taken. The non-
expanded macros are cases where a return or kernel panic is hidden inside a macro that
is not expanded (we use a feature of Coccinelle to expand all macros that are unique,

4.2. Linux 2.6 63

1 static void set_rx_mode(struct net_device *dev) {

2 ...

3 u16 hash_table[4];

4 ...

5 for (...) {

6 unsigned int bit;

7
8 ...

9 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;

10 hash_table[bit >> 4] |= (1 << bit);

11 }

12 }

Listing 4.17: False positive when using bitwise operators

i.e. that do not have multiple definitions, removing a long list of false positives). And
the address cases are where just the address of the memory is used and not the memory
at the address (as illustrated in Listing 4.11 on page 59). Before we look more closely at
some of these false positives, we will describe a couple of the more interesting bugs
that we have found.

Bugs

Using members of a freed structure as the freed storage can be potentially disastrous
as it may have had other values written to it by another part of the system that has
had the memory allocated to it in the meantime (when interrupts are enabled). A
member use in freed storage occurs among other places in drivers/serial/sunsu.c

as shown in Listing 4.18 where up is freed in line 9 and is subsequently accessed in
line 14 and 15. In particular, in the call to of_iounmap then up->port.membase’s virtual
page file may also be passed to kfree—if the value of up->port.membase has changed
between being freed in line 9 and the free inside of_iounmap this is a bug.7

The situation becomes evenmore precarious if the programwrites to freedmemory,
as this may allow a malicious user with some care and effort to direct the logic of a pro-
gram to execute his own code. Amemory write to freedmemory happens, among other
places, in drivers/video/igafb.c as shown in Listing 4.19 where par->mmap_map is
freed in line 7 and is subsequently assigned in lines 15–19 and 22–26, provided we are
compiling for a SPARC machine.

False positives

As noted in Table 4.3 the false positives we have found in Linux 2.6 are grouped
into four primary categories: just using the address and not the memory it points to,

7Strictly speaking, it is always an error to access freed memory as far as the C programming language
standard is concerned, but an error will usually only be triggered in practice if the memory has changed
between the free and use.

drivers/serial/sunsu.c
drivers/video/igafb.c

64 Results

Bugs found 17
False positives found 26

Success rate 40%

Table 4.2: Success rates for finding use-after-free bugs in Linux 2.6

Address 15
Interprocedural 5
Path pruning 4
Non-expanded macros 2

Table 4.3: Reasons for false positives for use-after-free bugs in Linux 2.6

1 static int __devexit su_remove(struct of_device *op) {

2 struct uart_sunsu_port *up = dev_get_drvdata(&op->dev);

3
4 if (up->su_type == SU_PORT_MS ||

5 up->su_type == SU_PORT_KBD) {

6 #ifdef CONFIG_SERIO

7 serio_unregister_port(&up->serio);

8 #endif

9 kfree(up);

10 } else if (up->port.type != PORT_UNKNOWN) {

11 uart_remove_one_port(&sunsu_reg, &up->port);

12 }

13
14 if (up->port.membase)

15 of_iounmap(&op->resource[0], up->port.membase, up->reg_size);

16
17 dev_set_drvdata(&op->dev, NULL);

18
19 return 0;

20 }

Listing 4.18: Use-after-free bug due to member access after free

4.2. Linux 2.6 65

1 int __init igafb_init(void) {

2 ...

3
4 if (!iga_init(info, par)) {

5 iounmap((void *)par->io_base);

6 iounmap(info->screen_base);

7 kfree(par->mmap_map);

8 kfree(info);

9 }

10
11 #ifdef CONFIG_SPARC

12 ...

13
14 /* First region is for video memory */

15 par->mmap_map[0].voff = 0x0;

16 par->mmap_map[0].poff = par->frame_buffer_phys & PAGE_MASK;

17 par->mmap_map[0].size = info->fix.smem_len & PAGE_MASK;

18 par->mmap_map[0].prot_mask = SRMMU_CACHE;

19 par->mmap_map[0].prot_flag = SRMMU_WRITE;

20
21 /* Second region is for I/O ports */

22 par->mmap_map[1].voff = par->frame_buffer_phys & PAGE_MASK;

23 par->mmap_map[1].poff = info->fix.smem_start & PAGE_MASK;

24 par->mmap_map[1].size = PAGE_SIZE * 2; /* X wants 2 pages */

25 par->mmap_map[1].prot_mask = SRMMU_CACHE;

26 par->mmap_map[1].prot_flag = SRMMU_WRITE;

27 #endif /* CONFIG_SPARC */

28
29 return 0;

30 }

Listing 4.19: Use-after-free bug due to writing to a variable after free

interprocedural cases that make the bug report a false positive, path pruning cases
where the bug occurs on a program path that can never occur, and non-expanded
macros where Coccinelle parses a macro use as a function call—if the macro contains
a return statement, the control flow graph will not reflect this. We will present an
example of the three latter cases and state how we could extend Coccinelle to be able
to deal with these cases.

The interprocedural case is likely the hardest to make Coccinelle able to uncover
given Coccinelle’s strongly intraprocedural nature. A typical example of this is from
arch/ia64/sn/kernel/xpc_channel.c as shown in Listing 4.20. Here the member
ch->local_msgqueue_base is freed in line 12 and subsequently used in line 9 where
its address is taken. However, as we see in line 25, xpc_kzalloc_cacheline_aligned
does not use the freed value, but merely assigns a new buffer to it. As a precautionary
measure, we could state that taking the address of a variable is not a use of it, as part of

arch/ia64/sn/kernel/xpc_channel.c

66 Results

our semantic patch, but we can easily imagine cases where this may just cause false
negatives instead. Thus, there are no good short-term solutions to avoiding these false
positive matches.

The lack of path pruning in Coccinelle has a potential to cause errant behaviour
in any semantic patch. We present one such case in Listing 4.21 from arch/x86/pci/

acpi.c where sd is freed in line 8 provided that bus is NULL, and it is subsequently
used in line 14, provided that bus is different from NULL, thus the two branches in the
example will never both be taken and there is thus no bug here either. Like with the
interprocedural case there is no easy way that we can avoid these false positives given
the current workings of Coccinelle, but a path pruning algorithm would be very high
on our wish list for future extensions.

Lastly there are the non-expanded macros that masquerade as function calls rather
than macro uses. This is shown in Listing 4.22 that is taken from drivers/ieee1394/

pcilynx.c where we have simplified the structure of the 341 line long function. We see
here that i2c_ad is freed in line 13 and subsequently used in line 20, however we never
make it there as there is a return statement as part of the FAILmacro in line 15. We
can solve these false positives manually one at a time by exploiting Coccinelle’s feature
to automatically expand all macros that are listed in the file specified by -macro_file
when invoking it, but this becomes cumbersome quickly. A better alternative would
be to let Coccinelle determine whether there are multiple definitions of a macro, and
if there is not, then Coccinelle could expand the macro automatically when we are
searching for bugs.8 It would always be safe to expand macros with only a single
definition for bug hunting.9

8Automatic expansion would not necessarily be interesting for transforming code as one may wish
to transform the use of one macro with the use of another.

9Unless we are trying to find bugs in the use of macros, of course.

arch/x86/pci/acpi.c
arch/x86/pci/acpi.c
drivers/ieee1394/pcilynx.c
drivers/ieee1394/pcilynx.c

4.2. Linux 2.6 67

1 static enum xpc_retval

2 xpc_allocate_local_msgqueue(struct xpc_channel *ch)

3 {

4 ...

5 for (nentries = ch->local_nentries; nentries > 0; nentries--) {

6 nbytes = nentries * ch->msg_size;

7 ch->local_msgqueue = xpc_kzalloc_cacheline_aligned(nbytes,

8 GFP_KERNEL,

9 &ch->local_msgqueue_base);

10 ...

11 if (ch->notify_queue == NULL) {

12 kfree(ch->local_msgqueue_base);

13 ch->local_msgqueue = NULL;

14 continue;

15 }

16 ...

17 }

18 ...

19 }

20
21 static void *
22 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)

23 {

24 ...

25 *base = kzalloc(size, flags);

26 ...

27 }

Listing 4.20: Use-after-free false positive due to interprocedural flow

68 Results

1 struct pci_bus * __devinit pci_acpi_scan_root(

2 struct acpi_device *device, int domain, int busnum

3)

4 {

5 ...

6 bus = pci_scan_bus_parented(NULL, busnum, &pci_root_ops, sd);

7 if (!bus)

8 kfree(sd);

9
10 #ifdef CONFIG_ACPI_NUMA

11 if (bus != NULL) {

12 if (pxm >= 0) {

13 printk("bus %d -> pxm %d -> node %d\n",

14 busnum, pxm, sd->node);

15 }

16 }

17 #endif

18 ...

19 }

Listing 4.21: Use-after-free false positive due to lack of path pruning

1 static int __devinit add_card(struct pci_dev *dev,

2 const struct pci_device_id *
devid_is_unused)

3 {

4 #define FAIL(fmt, args...) do { \

5 PRINT_G(KERN_ERR, fmt , ## args); \

6 remove_card(dev); \

7 return error; \

8 } while (0)

9
10 ...

11 else {

12 kfree(i2c_ad);

13 error = -ENXIO;

14 FAIL("read something from serial eeprom, but it does not seem

to be a valid bus info block");

15 }

16 ...

17 i2c_del_adapter(i2c_ad);

18 kfree(i2c_ad);

19 ...

20 }

Listing 4.22: Use-after-free false positive due to non-expanded macro

4.3. Other code-bases 69

4.3 Other code-bases

While Coccinelle has almost exclusively been applied to the Linux kernel in previous
literature, there should be nothing that causes it to be tied to this source code base. To
verify this we will look at two code-bases that are meant to be run continuously and be
exposed to the Internet.

We will present each of the code-bases below along with the bugs we have found in
them. For the sake of being able to match something, we will run our semantic patches
on prior versions of the code-bases that are known to contain bugs. There is nothing
that prohibits running our semantic patches on code-bases without known flaws, but
one would most likely need to be prepared to investigate several code-bases before
finding something that actually contains a bug that we can find, given the low number
of flaws we have developed patches for.

4.3.1 tbaMUD

tbaMUD is a text-based multiplayer online roleplaying game that is meant to run
continuously around the clock and provide a virtual world where players can log in
and engage each other and computer controlled entities in combat and puzzle-solving.
The game server is available from http://www.tbamud.com. We will run our semantic
patches against revision 103 from their subversion repository. Revision 103 contains
two known buffer overflow bugs in src/genqst.c.

Our somewhat sparse results for buffer overflows are shown in Table 4.4. We found
no use-after-free bugs in the source code. The two buffer overflow bugs are actually the
same bug, but in two different accesses to the same array that may both overflow. The
code is shown in Listing 4.23 and both the possible overflows that our semantic patch
detects are in line 8. The actual buffer overflow, though, may happen in line 7 provided
that the string representation of the float ismore than 19 characters (plus one for the null
terminator). This may easily happen as even on our 32-bit machine, the maximum float
value in string representation is ‘340282346638528859811704183484516925440.000000’,
which is clearly beyond 19 characters.

The two known buffer overflows are not detected as the declaration is global,
and thus outside the function where it is used in error (see §4.1.1). The known bugs
are shown in Listing 4.24 where QST_MASTER(rnum) in lines 3, 4, 5, and 6 might be
NOBODY, which is defined as ‘(unsigned short int)~0’, i.e. the maximum value for
an unsigned short integer.

4.3.2 Icecast

Our second code-base is an open source server for streaming multimedia across the
Internet that is used by several online radio stations. Software faults in this service
might take out an entire radio station and potentially lose the station a lot of revenue
from advertisements. Icecast is available from http://www.icecast.org and we will

http://www.tbamud.com
src/genqst.c
http://www.icecast.org

70 Results

Bugs found 2
False positives found 1

Success rate 67%

Table 4.4: Success rates for finding buffer overflows in tbaMUD

1 void do_float(FILE * shop_f, FILE * newshop_f)

2 {

3 float f;

4 char str[20];

5
6 fscanf(shop_f, "%f \n", &f);

7 sprintf(str, "%f", f);

8 while ((str[strlen(str) - 1] == ’0’) &&

9 (str[strlen(str) - 2] != ’.’))

10 str[strlen(str) - 1] = 0;

11 fprintf(newshop_f, "%s \n", str);

12 }

Listing 4.23: Buffer overflow in util/shopconv.c

be analysing revision 11411 from their subversion repository, which contains a single
known use-after-free bug.

We only find the known use-after-free bug, and no other faults or false positives at
all. The known use-after-free bug is illustrated in Listing 4.25 where fullpath is freed
in line 4 and subsequently used in line 6, i.e. a classic use-after-free bug.

4.4 Summary

We have shown that our extensions can help find bugs in real-world applications,
ranging from smaller Internet servers like tbaMUD and Icecast to large-scale operating
system kernels such as Linux. Our buffer overflow extension in particular suffers from
a large number of false positives, but we have outlined several steps that can be taken
to further strengthen its usefulness.

util/shopconv.c

4.4. Summary 71

1 int add_quest(struct aq_data *nqst) {

2 ...

3 if (mob_index[QST_MASTER(rnum)].func &&

4 mob_index[QST_MASTER(rnum)].func != questmaster)

5 QST_FUNC(rnum) = mob_index[QST_MASTER(rnum)].func;

6 mob_index[QST_MASTER(rnum)].func = questmaster;

7 ...

8 }

Listing 4.24: Known buffer overflow in genqst.c

1 int fserve_client_create (client_t *httpclient, const char *path)

{

2 ...

3 file = fopen (fullpath, "rb");

4 free (fullpath);

5 if (file == NULL) {

6 WARN1 ("Problem accessing file \"%s\"", fullpath);

7 client_send_404 (httpclient, "File not readable");

8 return -1;

9 }

10 ...

11 }

Listing 4.25: Known use-after-free bug in fserve.c

genqst.c
fserve.c

Chapter 5

Comparing Coccinelle to other bug finders

While we have already established that Coccinelle can be used as a bug finding tool
in Chapter 4, and in the work by Stuart et al. [2007] and Lawall et al. [2008], it is also
interesting to see how we compare to other bug finding tools, as this will both give us
an idea of our current effectiveness and possible avenues for future work.

Coccinelle has previously been compared to the work by Engler et al. [2000] by
Stuart et al. [2007]. In this chapter we will compare our work to Splint [Evans, 1996,
Larochelle and Evans, 2001] and Valgrind [Seward and Nethercote, 2005, Nethercote
and Seward, 2007a,b].1

There are a few more publically available tools that we will not try to compare
with, among others CCured [Necula et al., 2005], which requires the user to change a
potentially large amount of source code lines in order to ‘cure’ a program, and BOON
[Wagner et al., 2000], which tracks buffer overflows in programs. However, we could
not get BOON to compile properly. There are furthermore a number of simple lexical-
based tools that are basically extensions of grep that understand C tokens such as ITS4
and Flawfinder.2 Lastly, there are some more dynamic analysis tools such as Electric
Fence. Valgrind is by far the most polished and functional dynamic analysis tool
available, so we will focus on this.

In order to utilise the work we have already done, we will compare the accepted
results of Coverity (by Engler et al.) on the Linux kernel with Coccinelle in §5.1, and
we will compare our results on tbaMUD and Icecast with Splint and Valgrind in §5.2.
Before we proceed with the comparisons, we will briefly introduce each tool and its
functionality.

It is worth mentioning here that while each of the tools in this chapter support
finding a large number of kinds of bugs, we will only use them to find use-after-free
bugs and buffer overflows.

Coverity Prevent

What was originally an academic effort by Engler et al. [2000], has now spun off into a
commercial product called Coverity Prevent [Coverity]. Coverity has in collaboration
with the American Department of Homeland Security launched a great effort in provid-
ing ‘free’ scan results for a large number of open source software projects. At the time

1Splint is available from http://www.splint.org and Valgrind from http://www.valgrind.org.
2ITS4 is available from http://www.cigital.com/its4/ and Flawfinder from http://www.

dwheeler.com/flawfinder/.

73

http://www.splint.org
http://www.valgrind.org
http://www.cigital.com/its4/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/

74 Comparing Coccinelle to other bug finders

of writing there are 270 projects that are checked frequently.3 However, due to policy
restrictions, anyone developing a competing product (like Coccinelle), is prohibited
from using these scan results due to ‘intellectual property rights’:

Coverity’s Intellectual Property may include elements that would assist com-
petitors in creating or improving products competitive to Coverity’s tools.
You agree that by accepting access to the Service you commit not to distribute
or share details of the service or its analysis with any entity without prior
authorization from Coverity.

As an alternative, Engler et al. [2000] used to have their full results from using the
Stanford Checker on the Linux 2.4.2 kernel (and a few earlier versions) available on a
website, however, access to this site has been closed for several months now, making a
comparison with these results impossible as well.4

As a last resort, we have chosen to compare our results against the kernel patches
that credit Coverity for finding a bug, and the bug is either a use-after-free bug or a
buffer overflow. While this will afford us no knowledge of the comparative false positive
rates, it can tell us whether we are as good at matching flaws as they are.

While Coverity today is applied to a large number of open source projects, a few
samples from the revision control systems of other projects show no similar endeavour
to credit Coverity with finding a bug. We will therefore only be able to compare our
results on the Linux kernel with Coverity.

Splint

Splint is, like Coverity and Coccinelle, a static analysis tool, but unlike Coverity and
Coccinelle it relies on user-defined comments in the source code to direct its static
analysis. Splint contains features for detecting both buffer overflows [Larochelle and
Evans, 2001] and use-after-free bugs [Evans, 1996]. Splint may process files with and
without extra user comments directing its efforts—we will only use it on programs that
are not adorned with such comments.5

Unlike Coccinelle, Splint works on preprocessed code, so it will only check a single
configuration of a program. We will configure the programs using a standard Ubuntu
8.04 distribution on a Linux 2.6.24 kernel, and run Splint on this configuration.

Valgrind

Unlike the other tools, Valgrind is a dynamic analysis tool that is both a platform for
writing tools that check a program for certain properties and a virtual processor on
which the program is run that calls into a specific Valgrind tool. We will only use the

3The results are available at http://scan.coverity.com.
4We have contacted them about making the database available, but the latest response we have had is

that the server is corrupted and they are looking for a backup if it exists.
5tbaMUD contains user comments that indicate whether some instances of using strcpy are safe,

however they are not in a format can Splint will use them.

http://scan.coverity.com

5.1. Coverity and Linux 2.6 75

default tool for Valgrind, called memcheck, that tries to verify that the program being
executed does not write to unallocated memory, that freed memory is not used, etc.
Memcheck accomplishes this using Valgrind’s shadow memory model [Nethercote
and Seward, 2007b] that tries to ensure that all memory accesses are legal.

Given Valgrind’s dynamic nature, it will, like Splint, only work on a single configu-
ration of a program. Furthermore, it only detects flaws in the parts of the program that
are executed.

5.1 Coverity and Linux 2.6

The comparison with Coverity is based on the Linux 2.6 kernel at commit ID baad-

ac8b10c5ac15ce3d26b68fa266c8889b163f.6 We have searched through the log for
the git repository, dating from April 2005 to March 2008, and we have found mention
of 38 buffer overflows and 37 use-after-free bugs that are attributed to Coverity.

For each of these bugs we have run the SmPL patches from Chapter 3 on them
and recorded whether we also match the bug. Of the 38 buffer overflows, we match
2, and of the 37 use-after-free bugs we were able to match 24, where the ones we miss
are either interprocedural or hit some corner case we have not implemented for the
expression-based control flow graph.

Below, we cover the things that Coverity has found, what we have found, and more
importantly, what we have missed.

5.1.1 Buffer overflow bugs in the Linux-2.6 kernel

Table 5.1 lists all the 38 commits where a buffer overflow that has been attributed
to Coverity has been fixed, and for each of these commits we indicate whether we
could match it, or if not, why. We will start with looking at the two cases that we do
match, and then we will look at a single case where we cannot match the code due to it
being interprocedural. One of the failures is caused by a short-coming in how we deal
with empty ranges in the generalised constant propagation algorithm and the other is
because the array is inline-initialised without specifying an explicit size to the array, as
covered in §4.1.1.

The first case that we match, the code in the commit just before commit ID 8ea3-

71fb6df5a6e8056265e0089fd578e87797fc, is shown in Listing 5.1. It is a classic case
of copy-paste coding, where the use in line 17 may be out of bounds as j is constrained
to the bounds of period rather than delay. Since ARRAY_SIZE expands into a sizeof
computation, we match this buffer overflow due to our cautionary measure of resolving
any sizeof computation to the bounds [−∞;∞]. As such we also mark the access of
period[i] in line 13 to be a potential buffer overflow, even though it is not.

Looking at the code just before commit ID d6d21dfdd305bf94300df13ff47214-

1d3411ea17 in Listing 5.2, we see that this is a classical off-by-one error that causes a
6Available from http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=

commit;h=baadac8b10c5ac15ce3d26b68fa266c8889b163f.

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=baadac8b10c5ac15ce3d26b68fa266c8889b163f
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=baadac8b10c5ac15ce3d26b68fa266c8889b163f

76 Comparing Coccinelle to other bug finders

Commit ID with fix Coccinelle match

84ea77635b91a6ca1c0c592ee5ddc0c780856b97 Interprocedural
80c6e3c0b5eb855b69270658318f5ccf04d7b1ff Interprocedural
5fd571cbc13db113bda26c20673e1ec54bfd26b4 Interprocedural
9f13fae2479ed2e2801d538d6a22309123c704f6 Interprocedural
a6a61c5494145c904bead0cceadd94080bd3a784 Interprocedural
d698f1c72629ff43d0cb6b9f1d17c491c057a0d9 Interprocedural
1a34456bbbdaa939ffa567d15a0797c269f901b7 Interprocedural
6dde432553551ae036aae12c2b940677d36c9a5b Interprocedural
d93c2efc93f61c95808e303982f12fe6f5987270 Interprocedural
e60b6e2f747e94358fed9a23afd6abd738de4bf7 Interprocedural
65b07ec29354b345ff93914d064c2467aef4c862 Interprocedural
51af33e8e45b845d8ee85446f58e31bc4c118048 Interprocedural
805d92dfa627acad3d4a78966bc5e4f8183d48b3 Fail
221c80cf03d77490b8e45184a273834d0259b9e0 Interprocedural
6551198a201a70cb11e25712b1d0b2a369bb8a4c Interprocedural
64e862a579015d229b8e40b6bc4ac3612e9656e1 Interprocedural
c899a575fa9cc802a4a77f6c5078b14fc1d12487 Interprocedural
69b311a4dabc9163288be1fe993cb7db47541e67 Interprocedural
e6a5fdf56e3a5fc179cd8c8c19081a9a11882b0c Interprocedural
a0a74e45057cc3138c29173e7b0b3db8b30939ae Interprocedural
88ae704c2aba150372e3d5c2f017c816773d09a7 Interprocedural
32a70a817acbb96fcfcc7543932222467c771207 Interprocedural
23c15c21d34a4b4b4d7b9a95ce498991c5339c77 Fail
bf703c3f199342da440a30798b6120f391741ffe Interprocedural
d24030f0f71390b1a01796d664445352bd403269 Interprocedural
05052f7f130b1232faeee1674a5bc41f67746cff Interprocedural
b196872cd65a06ad65853c4513e0d0f24452d32e Interprocedural
0d0d871b3f3395820ec33a78fb2cc101b9bdcced Interprocedural
8ea371fb6df5a6e8056265e0089fd578e87797fc ✓

0a3a6d69b7e9f1d7fa5add7db528e7b81cbd422e Interprocedural
68a26aecb3829d013f612def3c8995efdbad3306 Interprocedural
052bb88e180d010f7da7186e6f21eea3be82a903 Interprocedural
9ec85c03d045d5ec24d6f15649a68646aefe88ba Interprocedural
e3a5cd9edff9a7a20de3c88c9d479704da98fb85 Interprocedural
3b71797eff4352b4295919efc52de84f84d33d94 Interprocedural
d6d21dfdd305bf94300df13ff472141d3411ea17 ✓

5bab2482083077d1e14644db2546c54534156849 Interprocedural
3a63e44420932852efd6a7d6d46cdad4d427f880 Interprocedural

Table 5.1: Buffer overflow bugs from the Linux 2.6 kernel

buffer overflow, i.e. the loop runs one place too far, and thus the ’\0’ written in line 7
is one beyond the bounds of the buffer. Like with the other buffer overflow we detect,
we only detect this by virtue of imprecision since we assign i the interval [−∞;∞]
since we have no better approximation of what sizeof is in our implementation. This
means that we in reality also flag the array access in line 6 as a possible buffer overflow,
even though it is not.

As an example of interprocedural use, we may look at the code just prior to commit
ID 80c6e3c0b5eb855b69270658318f5ccf04d7b1ff as shown in Listing 5.3 where the
guard in line 7 should have been a ‘>=’ to not cause a potential buffer overflow in
line 9. The actual array, scsi_device_types, is defined globally in the same file as
the function, and as such our semantic patch does not pick up its existence. This
corresponds to the issue illustrated in Listing 4.3 on page 53.

5.1. Coverity and Linux 2.6 77

1 static int atkbd_set_repeat_rate(struct atkbd *atkbd)

2 {

3 const short period[32] =

4 { 33, 37, 42, 46, 50, 54, 58, 63, 67, 75, 83, 92, 100, 109,

116, 125,

5 133, 149, 167, 182, 200, 217, 232, 250, 270, 303, 333, 370,

400, 435, 470, 500 };

6 const short delay[4] =

7 { 250, 500, 750, 1000 };

8
9 struct input_dev *dev = atkbd->dev;

10 unsigned char param;

11 int i = 0, j = 0;

12
13 while (i < ARRAY_SIZE(period) - 1 && period[i] < dev->rep[

REP_PERIOD])

14 i++;

15 dev->rep[REP_PERIOD] = period[i];

16
17 while (j < ARRAY_SIZE(period) - 1 && delay[j] < dev->rep[

REP_DELAY])

18 j++;

19 dev->rep[REP_DELAY] = delay[j];

20
21 param = i | (j << 5);

22 return ps2_command(&atkbd->ps2dev, ¶m, ATKBD_CMD_SETREP);

23 }

Listing 5.1: Buffer overflow in the Linux-2.6 kernel (commit ID 8ea371fb6df5a6e805-

6265e0089fd578e87797fc)

1 void __init efi_init(void) {

2 ...

3 char vendor[100] = "unknown";

4 ...

5 for (i = 0; i < sizeof(vendor) && *c16; ++i)

6 vendor[i] = *c16++;

7 vendor[i] = ’\0’;

8 ...

9 }

Listing 5.2: Buffer overflow in the Linux-2.6 kernel (commit ID d6d21dfdd305bf9430-

0df13ff472141d3411ea17)

78 Comparing Coccinelle to other bug finders

1 const char * scsi_device_type(unsigned type)

2 {

3 if (type == 0x1e)

4 return "Well-known LUN ";

5 if (type == 0x1f)

6 return "No Device ";

7 if (type > ARRAY_SIZE(scsi_device_types))

8 return "Unknown ";

9 return scsi_device_types[type];

10 }

Listing 5.3: Buffer overflow in the Linux-2.6 kernel (commit ID 80c6e3c0b5eb855b69-

270658318f5ccf04d7b1ff)

Apart from the noted failures in our implementation, we are able to match all the
intraprocedural buffer overflows that have also been found by Coverity. Some work
remains in matching buffer overflows due to interprocedural properties.

5.1.2 Use-after-free bugs in the Linux-2.6 kernel

The commits containing use-after-free bug fixes attributed to Coverity are listed in
Table 5.2. All of the matches we make are fairly straightforward use-after-free bugs, and
the failures are due to some unresolved differences between the our expression-based
control flow graph and Coccinelle’s model checker, so we will not go into detail about
any of these. Of more interest, however, is the reason for our inability to match the
majority of the interprocedural cases.

A typical interprocedural case, taken from the code just prior to commit ID 8d-

c22d2b642f8a6f14ef8878777a05311e5d1d7e, is shown in Listing 5.4. If the call to
rose_route_frame in line 4 succeeds then skbn is actually freed, and as such the use
of skbn in line 11 is invalid. This is symptomatic of the majority of the cases marked
‘Interprocedural’ in Table 5.2. We could utilise the same protocol finding techniques as
employed by Lawall et al. [2008] to find all functions that may free a passed variable
as part of either success or failure, and then create a semantic patch that utilises this
information in matching use-after-free cases. This should be able to match the majority
of the interprocedural cases in the Linux kernel, but it will not be a general substitution
against other code-bases that are less structured.

5.2 Splint, Valgrind and the other code-bases

While we could not provide a direct a comparison with Coverity, we can do that with
Splint and Valgrind. In the sections below we will describe our approach to analysing
tbaMUD and Icecast using Splint and Valgrind respectively, as well as explain the faults
we find, the false positives, and in particular look at the differences to Coccinelle.

5.2. Splint, Valgrind and the other code-bases 79

Commit ID with fix Coccinelle match

2daa48729dfafd349c2a52520734de2edb9dc805 ✓

8dc22d2b642f8a6f14ef8878777a05311e5d1d7e Interprocedural
bafefc0cf8e4b34fbb159ea2e2aef2358ebff935 ✓

7c908fbb0139fa1080412d0590189abfe2df87eb (5 matches)✓
cdee5751bf91d02616aaf30a5affef56105e3b79 Interprocedural
5185c7c20a4b88892f868ad8d92d1b640b1edba9 ✓

a2e9c384ce76993cd68d6de57eaa81985b4618e3 ✓

f84fba6f969065c6622669bbaa955c26fc1461ae ✓

ad008d42bcec99911b3270a8349f8ec8405a1c4e (2 matches)✓
651be3a2ba95bc30fcb737985741736e63231cdf ✓

2fa993423a345fd484f7295797ddb59b7738ad38 Interprocedural
d5cd97872dca9b79c31224ca014bcea7ca01f5f1 ✓

1544fdbc857cbe8afca16a521d3254346befeb06 ✓

fcf94c89af8acccb14ce37b1c9e8dd6bd32a999d Interprocedural
bdc3e603cda3433c2ccc2069d28f7f3cd319cfc6 Interprocedural
1a3cac6c6d1f56dc26939eb41be29844f897c15a ✓

07ddf768d860bee7bd6581b7af3ce1009dbd05d0 ✓

de47b69c7b7be46b0848b2c4f8e23c478cd68690 ✓

c9b3febc5b9c55a76b838c977b078195ec8bb95e Fail
09c7d8293a2d1317d16ef4ddb9f6dd2553d0694e ✓

190644e180794208bc638179f4d5940fe419bf9c Interprocedural
98ac0e53facc851f8bc5110039ab05005c0c4736 ✓

c4e90ec0134d7bedebbe3fe58ed5d431293886d4 Fail
d04d01b113be5b88418eb30087753c3de0a39fd8 ✓

835d90c4218dffe6f9e7ac1ed79795197a4970c4 Fail
104326f8df9925317cca64b84249d3eac5de7c74 ✓

699756199d65700e8deed59ae250439ca8684686 ✓

8abceaf1cf44b9d95bcc366fa277b33e292141c4 ✓

3de4414e798795ef5d719622dbf12bbe27a9e72e Interprocedural
bcc54f9a563f146e723ead16c76f842bcaeb694e Interprocedural
c27e8c591854ef349fdf5bec777355dae04bb48f Interprocedural
a2df813beab42740fa8043b3fdc9e1d15784b9ec Interprocedural

Table 5.2: Use-after-free bugs from the Linux 2.6 kernel

1 static int rose_rebuild_header(struct sk_buff *skb)

2 {

3 ...

4 if (!rose_route_frame(skbn, NULL)) {

5 kfree_skb(skbn);

6 stats->tx_errors++;

7 return 1;

8 }

9
10 stats->tx_packets++;

11 stats->tx_bytes += skbn->len;

12 ...

13 }

Listing 5.4: Use-after-free bug from the Linux-2.6 kernel (commit ID 8dc22d2b642f-

8a6f14ef8878777a05311e5d1d7e)

80 Comparing Coccinelle to other bug finders

5.2.1 Splint

To analyse the programs using Splint, we have configured each of the programs using
their regular automake setup on a standard Ubuntu 8.04 system on a single 32-bit AMD
processor as this will generate some needed header files. For the analysis we will be
using Splint version 3.1.2. As stated we will only use Splint to look for buffer overflows
and use-after-free bugs, and we will therefore run Splint with a number of switches
that makes it disregard other issues. The exact switches for each of the two programs
are given below. We will not explain what the switches do, but rather refer to Splint’s
documentation.

Each issue reported by Splint is on the same form as shown in Listing 5.5 where
Splint has discovered a possible use-after-free bug in dg_olc.c.

tbaMUD

We have run Splint on each .c file in tbaMUD using the switches shown in Listing 5.6.
This has produced a total number of 440 possible faults, where 165 are possible buffer
overflows and the remaining 275 are possible use-after-free bugs. After having gone
through this list of possible faults we have discovered 8 places where buffer overflows
may occur and 2 places where a use-after-free bug may occur.7 The results are listed
with success rates in Table 5.3 and 5.4.

As noted in §4.3.1, the version of tbaMUDwe are checking contains a known buffer
overflow in genqst.c, and like Coccinelle, Splint does not find this bug. The reason
that Splint is not able to detect this bug is because the array accessed, mob_index, is
heap allocated and with a size that is dependent on the data files for the MUD.

Most of the actual buffer overflow bugs are due to uses of strcpy that we do not
track explicitly in Coccinelle, and in fact it seems as if Splint does nothing more than
alert on each case of strcpy merely by virtue of being an error-prone function. As
an example of one of these bugs, we may consider Listing 5.7 where when the player
can see the relevant object, then its short_descriptionmay be MAX_STRING_LENGTH
long, which is a good deal longer than the 128 characters available in buf. Since string
operations are a very error-prone aspect of the C programming language, it would
make sense to create patterns for matching these cases in Coccinelle. The remaining
buffer overflows that are found by Splint are almost identical to this one. As a point of
interest it also finds the buffer overflows that Coccinelle does, however, Splint finds
them due to the use of strcpy rather than the array access after the strcpy.

Both the use-after-free bugs that Splint finds are fairly straightforward uses of
memory after it has been freed. The reason that Coccinelle finds neither of these is
that the two files they belong to has hit upon a flaw in our implementation where the
expression-based control flow graph is not in a form that Coccinelle’s model checker
expects, and thus nothing is found. We expect that if this flaw were corrected, then
Coccinelle should find both use-after-free bugs without any further issues. One of the

7This corresponds to success rates of 4.6% for the buffer overflows and only 7‰ for the use-after-free
bugs.

5.2. Splint, Valgrind and the other code-bases 81

dg_olc.c:459:13: Field proto->arglist used after being

released

dg_olc.c:419:10: Storage proto->arglist released

Listing 5.5: Splint error report

splint -I. -varuse -noret -initallelements -formatconst

-fixedformalarray -firstcase -ifempty -castfcnptr

-aliasunique -immediatetrans -noeffect -dependenttrans

-observertrans -macrovarprefixexclude -nullassign

-statictrans -shadow -exitarg -unreachable -globstate

-unqualifiedtrans -compmempass -exportlocal -kepttrans

+charindex -temptrans -shiftimplementation

-unsignedcompare -compdestroy -onlytrans -casebreak

-modobserver -formattype -nullret -unrecog -nullderef

-branchstate -mustfreeonly -predboolothers -usedef

-compdef -evalorder -nullstate -incondefs -predboolint

-paramuse -mustfreefresh -shiftnegative -type -nullpass

-retvalint -retvalother -boolops +posixlib -D__GNUC__

Listing 5.6: Splint switches for analysing tbaMUD

Bugs found 8
False positives found 157

Success rate 4.8%

Table 5.3: Success rates for finding buffer overflows in tbaMUD with Splint

Bugs found 2
False positives found 273

Success rate 0.7%

Table 5.4: Success rates for finding use-after-free bugs in tbaMUD with Splint

82 Comparing Coccinelle to other bug finders

#define MAX_STRING_LENGTH 49152

#define OBJS(obj, vict) (CAN_SEE_OBJ((vict), (obj)) ? \

(obj)->short_description : "something")

static int Crash_report_unrentables(struct char_data *ch, struct

char_data *recep, struct obj_data *obj)

{

char buf[128];

...

sprintf(buf, "$n tells you, ’You cannot store %s.’", OBJS(obj,

ch));

...

}

Listing 5.7: Example of a buffer overflow in tbaMUD discovered by Splint

use-after-free bugs that Splint has uncovered is illustrated in Listing 5.8. This is only a
use-after-free bug on some paths, namely the ones where trg->arglist in line 4 is
NULL, because proto->arglist in line 13 will refer to the already freed memory from
line 9.

The false positives do, however, tell us a lot more about the way that Splint works.
The buffer overflow reports in particular are all due to tbaMUD’s extensive use of
sprintf (rather than snprintf), and these are the only possible sites for buffer over-
flows that Splint considers on the tbaMUD code-base. We can verify that this is merely
an extremely naïve implementation of reporting sprintf-uses given the code in List-
ing 5.9 where it is clear that the string length of the formatted string in line 6 will
only be 3 characters (plus 1 for the null-terminator), which is clearly less than 49152
characters. The remaining false positives for buffer overflows follow the same pattern,
but a lot of them are not as obviously false positives.

The false positives for use-after-free are a bit more varied as Splint has a more
general idea of when objects are released rather than just with a call to free.

Since C does not contain copy constructors like C++, the tbaMUD developers have
solved the problem by assigning one struct to another using the syntax ‘*dest = *src’,
followed by another call that properly copies all pointers (e.g. strings) in the struct.
This, however, is seen by Splint as src releasing all its members, and if it is thus used
subsequently to this copying, a long list of false positives will be generated. This can,
for instance, be seen in genmob.c, also shown in Listing 5.10, where *mob is copied to
the prototype list of monsters and subsequently all its strings are copied properly to
the prototype. In reality, *mob is not freed at the use in line 5, despite Splint’s report to
the contrary.

One of themore curious use-after-free false positives are shown in Listing 5.11 where
Splint reports a use-after-free bug in the loop increment, ‘ch = ch->next_in_room’, in
line 4, as it considers that ch has been released at the return in line 8. We can clearly

5.2. Splint, Valgrind and the other code-bases 83

1 void trig_data_copy(trig_data *this_data, const trig_data *trg)

2 {

3 ...

4 if (trg->arglist) this_data->arglist = strdup(trg->arglist);

5 }

6
7 void trigedit_save(struct descriptor_data *d) {

8 ...

9 free(proto->arglist);

10 ...

11 trig_data_copy(proto, trig);

12 ...

13 if (proto->arglist)

14 live_trig->arglist = strdup(proto->arglist);

15 ...

16 }

Listing 5.8: Use-after-free bug in tbaMUD discovered by Splint

1 #define MAX_STRING_LENGTH 49152

2
3 int format_text(char **ptr_string, int mode, struct

descriptor_data *d, unsigned int maxlen, int low, int high)

{

4 ...

5 char buf[MAX_STRING_LENGTH];

6 sprintf(buf, "%c ", *flow);

7 ...

8 }

Listing 5.9: Buffer overflow false positive as reported by Splint

1 int add_mobile(struct char_data *mob, mob_vnum vnum) {

2 ...

3 mob_proto[i] = *mob;

4 mob_proto[i].nr = i;

5 copy_mobile_strings(mob_proto + i, mob);

6 ...

7 }

Listing 5.10: Use-after-free false positive as reported by Splint

84 Comparing Coccinelle to other bug finders

see that this is not the case, but it illustrates that the algorithm used by Splint to detect
use-after-free bugs is flow insensitive, as the return would otherwise have escaped the
flow from the loop.

The last type of false positive where Splint is overly zealous is illustrated in List-
ing 5.12. The false positive occurs in line 7 as it states that ch->player.short_descr,
which is freed in line 4, reaches that point and is passed as a parameter out of the
function. While this may, indeed, lead to a use-after-free were the affect_remove
function to use it, there is no such use in affect_remove and it is therefore a false
positive. There are a lot of these false positives generated for several of the tbaMUD
functions, given the way that e.g. characters are freed, and since Splint generates a false
positive for every previously freed member, it may contribute substantially to the total
count of false positives for some of the more complex structures.

As we have seen, Splint can find bugs in tbaMUD, but it does so with extreme
caution by reporting all possible issues, even if a fairly simple verification could have
removed an issue as a false positive. Furthermore, not removing false positives causes
Splint to only obtain a 7‰ success rate for finding use-after-free bugs in tbaMUD. On
the other hand, by exerting this caution it also finds 7 buffer overflows in tbaMUD that
Coccinelle does not. This is, however, primarily due to the fact that we do not track
uses of strcpy and other unsafe string operations in our semantic patches.

Icecast

We have run Splint on each .c file in Icecast using the switches shown in Listing 5.13.
This has produced a total number of 23 possible faults, where 4 are possible buffer
overflows and the remaining 19 are possible use-after-free bugs. Of these, there are zero
buffer overflows and a single use-after-free bug, namely the known bug. The results for
use-after-free bugs are listed in Table 5.5.

As all the false positives for Icecast mimic the behaviour from running Splint on
tbaMUD, we will not present any of the false positive cases here.

5.2.2 Valgrind

For our tests we will be using Valgrind version 3.3.0 from the Ubuntu 8.04 repository.
Each of the programs are run in their standard configuration where we try to exert the
parts of the program that will be utilised as part of normal use. We will describe our
approach to testing each program in more detail below. For both programs, Valgrind
reports a number of other issues like using uninitialised variables, but we will disregard
all of these for the purposes of comparing found buffer overflows and use-after-free
bugs to Coccinelle.

tbaMUD

We have run the tbaMUD server as checked out without any modifications to it and
have subsequently connected two clients to it, one to test some of the administrative
features, and one to play the game as a normal player. We have tried tomake some effort

5.2. Splint, Valgrind and the other code-bases 85

1 static struct char_data *get_victim(struct char_data *chAtChar)

2 {

3 ...

4 for (ch = world[IN_ROOM(chAtChar)].people; ch; ch = ch->

next_in_room) {

5 if (FIGHTING(ch) == NULL)

6 continue;

7 ...

8 return (ch);

9 }

10 ...

11 }

Listing 5.11: Use-after-free false positive as reported by Splint

1 void free_char(struct char_data *ch) {

2 ...

3 if (ch->player.short_descr)

4 free(ch->player.short_descr);

5 ...

6 while (ch->affected)

7 affect_remove(ch, ch->affected);

8 ...

9 }

Listing 5.12: Use-after-free false positive as reported by Splint

splint -I.. -I/usr/include/libxml2 -I. -varuse -noret

-initallelements -formatconst -fixedformalarray

-firstcase -ifempty -castfcnptr -aliasunique

-immediatetrans -noeffect -dependenttrans

-observertrans -macrovarprefixexclude -nullassign

-statictrans -shadow -exitarg -unreachable -globstate

-unqualifiedtrans -compmempass -exportlocal -kepttrans

+charindex -temptrans -shiftimplementation

-unsignedcompare -compdestroy -onlytrans -casebreak

-modobserver -formattype -nullret -unrecog -nullderef

-branchstate -mustfreeonly -predboolothers -usedef

-compdef -evalorder -nullstate -incondefs -predboolint

-paramuse -mustfreefresh -shiftnegative -type -nullpass

-retvalint -retvalother -boolops +posixlib -D__GNUC__

Listing 5.13: Splint switches for analysing Icecast

86 Comparing Coccinelle to other bug finders

Bugs found 1
False positives found 19

Success rate 5%

Table 5.5: Success rates for finding use-after-free bugs in Icecast with Splint

to use multiple parts of the code-base, but by no means all of it. We have furthermore
made sure that we activate the known buffer overflow bug. However, despite our best
efforts, Valgrind only finds a single use-after-free bug as part of the shutdown procedure
of the MUD. It does not find the known buffer overflow either.

The use-after-free bug that Valgrind finds is, indeed, fairly involved. As part of
the MUD database being freed each character is processed and anyone following that
character is stopped from following him and then the character is freed. If a room
contains three characters A, B, and C, and C is following B and the characters are freed
in alphabetical order, then as part of the procedure that stops C from following B a
message will be printed to everyone in the room, ‘C stops following B’. However, as
A is already freed, but not removed from the room’s character list, the MUD will try
to send this message to that person, resulting in a use-after-free. The relevant code
is located in db.c lines 472–478, but since it touches on so many parts of the MUD
code-base, we will not try to present all the code here.

It is, however, more interesting that Valgrind also fails to detect the known buffer
overflow. To understand why this is the case, we have to delve into howValgrind checks
that memory accesses are safe, which is in fact fairly simple: A memory access is safe
when the memory is defined [Nethercote and Seward, 2007b]. This means that when
we have the array mob_index that is allocated with size 3612 (default number of mobs),
but indexed with 65535, then this is clearly semantically invalid, but Valgrind sees it as
no problem if the address ‘mob_index + 65535’ is defined. So even if we had some way
to test all parts of the code in all possible configurations, we might still not discover
these bugs as part of the program execution.

Icecast

Icecast is only really an intermediary webserver that facilitates access to media served
by another program to clients that connect to the Icecast webserver using their media
player. To test Icecast in as much of a production environment that we can replicate,
we use IceS2 to provide a playlist of an Ogg Vorbis encoded version of the music
album ‘Michael Bublé - Call Me Irresponsible’, streaming data to the Icecast webserver
at /playlist.ogg, and connect to this playlist using the Exaile music client and listen
to it for the entire duration of the album.8 Since the known bug lies exclusively in the
webserver part of Icecast, we also make a request on a local file that we have removed
read-permission from for the Icecast user, as this is what triggers the bug.

8IceS2 is available from http://www.icecast.org/ices.php and Exaile is available from http:

//www.exaile.org.

/playlist.ogg
http://www.icecast.org/ices.php
http://www.exaile.org
http://www.exaile.org

5.3. Summary 87

After having performed the test as described above, the only result we got was the
known use-after-free bug, which is shown from the Valgrind log in Listing 5.14. Here
the read in fserve.c:471 corresponds to the use after the fullpath variable was freed
in fserve.c:468.

5.3 Summary

Wehave compared our extensions to Coccinelle with the successful matches of Coverity
on the Linux kernel, since their full results are not freely available, and found that we
match the intraprocedural cases as well as Coverity, but, as expected, we fail to match
interprocedural occurrences of bugs.

We have furthermore compared our extensions to the bug finding capabilities of
the publically available static analysis tool, Splint, and the publically available dynamic
analysis tool, Valgrind, and found that for the code-bases we have tested on, Splint
produces a larger amount of false positives, but due to its general complaining about
unsafe string operations also find somemore bugs thanwe dowith Coccinelle. Valgrind
fails to match one of the known bugs that we had expected that it would find. Apart
from this, Valgrind tends to find some more involved bugs, but will miss any bugs that
are not part of the execution path.

After having reviewed each of the tools in relation to Coccinelle, we cannot say
that Valgrind, Splint or Coccinelle is better than the others, or that one could replace
the others as each tool finds bugs the others do not. We can furthermore not conclude
anything useful about Coverity as we do not have data on its false positive rates.

88 Comparing Coccinelle to other bug finders

==18907== Invalid read of size 1

==18907== at 0x4024532: mempcpy (mc_replace_strmem.c:676)

==18907== by 0x42ED04A: _IO_default_xsputn (in /lib/tls/i686/cmov/libc-2.7.so)

==18907== by 0x42C6AE2: vfprintf (in /lib/tls/i686/cmov/libc-2.7.so)

==18907== by 0x42E7C03: vsnprintf (in /lib/tls/i686/cmov/libc-2.7.so)

==18907== by 0x80676B9: log_write (log.c:439)

==18907== by 0x80586A8: fserve_client_create (fserve.c:471)

==18907== by 0x805EE1F: add_authenticated_client (auth.c:360)

==18907== by 0x805F0F4: add_client (auth.c:434)

==18907== by 0x805091C: _handle_connection (connection.c:875)

==18907== by 0x8065F77: _start_routine (thread.c:655)

==18907== by 0x42714FA: start_thread (in /lib/tls/i686/cmov/libpthread-2.7.so)

==18907== by 0x435BE5D: clone (in /lib/tls/i686/cmov/libc-2.7.so)

==18907== Address 0x469f968 is 48 bytes inside a block of size 52 free’d

==18907== at 0x402265C: free (vg_replace_malloc.c:323)

==18907== by 0x80582A2: fserve_client_create (fserve.c:468)

==18907== by 0x805EE1F: add_authenticated_client (auth.c:360)

==18907== by 0x805F0F4: add_client (auth.c:434)

==18907== by 0x805091C: _handle_connection (connection.c:875)

==18907== by 0x8065F77: _start_routine (thread.c:655)

==18907== by 0x42714FA: start_thread (in /lib/tls/i686/cmov/libpthread-2.7.so)

==18907== by 0x435BE5D: clone (in /lib/tls/i686/cmov/libc-2.7.so)

Listing 5.14: Valgrind detection of the known use-after-free bug in Icecast

Chapter 6

Conclusion

We believe that we have succeeded in showing that Coccinelle can be used to find bugs,
however the false positive rates are fairly large and it will require some changes to make
Coccinelle into a bug-finding tool that can compete on equal terms with e.g. Coverity.

We have developed an extension for Coccinelle’s front-end domain specific lan-
guage, SmPL, that allows Coccinelle to be used easily for reporting possible bug-sites
using scripting rules with embedded Python code. Using the full integration of the
Python interpreter into Coccinelle, we have furthermore exploited the prototyping ca-
pabilities this affords us to implement an alternative control flow graph representation
that simplifies some semantic patches for finding use-after-free bugs. Also using these
prototyping capabilities, we have implemented generalised constant propagation in
an effort to estimate the possible interval of values that a program variable may have
during program execution, which we use to find possible buffer overflow bugs in fully
defined intraprocedural array definitions and uses.

Using these extensions we have begun work on adding SmPL patterns for bug
descriptions in the Common Weakness Enumeration taxonomy to provide a more
rigorous foundation for indicating when these bugs occur in C programs. We have,
however, only taken a few, short steps into this territory, as covering all possible cases
where a bugmay occur using SmPL patterns would be very time-consuming. Take as an
example the stack-based buffer overflow taxonomy element. There are countless ways
that a buffer overflow can be achieved in C, including using simple array accesses like
the ones we have described, as well as string operations, pointer dereferences, system
calls, and many, many other variations, both intraprocedural and interprocedural. We
have made no effort in providing exhaustive SmPL patterns for any of the bugs we
have looked at, but it is our belief that SmPL, or a variation thereof, might provide
better understanding of bugs in a taxonomy, both for security researchers, but probably
more importantly, for normal programmers who are trying to understand the nebulous
properties of e.g. a stack-based buffer overflow. Specifying a fault succintly in a pattern
will, however, require a good deal further research, in our opinion.

We have furthermore successfully run Coccinelle with our extensions on a devel-
opment branch of the Linux 2.6 kernel, tbaMUD, and Icecast, finding bugs in all of
them. Finding buffer overflows using generalised constant propagation has proven
to be somewhat more difficult, though, since sizeof seems to be used extensively
in e.g. the Linux kernel and we lack support for accurately computing the size of an
expression. This has caused us to be overly conservative, giving us a very low success
rate.

89

90 Conclusion

Finally, we have compared the results of our extensions with other analysis tools
for finding bugs, in particular Coverity on the Linux kernel, and Splint and Valgrind
on tbaMUD and Icecast. There is no conclusive evidence that any of the tools are better
than the others, but with continued work, Coccinelle should be able to compete well
with the other tools. For the cases we do support, we match virtually all the same
intraprocedural faults as Coverity, Splint, and Valgrind do.

As part of this thesis, as well as in the work Stuart et al. [2007] and Lawall et al.
[2008], we have taken the first successful steps toward using Coccinelle as a full-fledged
bug hunting tool by using the scripting rule extensions together with Coccinelle’s
existing model checker. It is our belief that with continued work, Coccinelle could
become a serious contender as a static analysis platform that allows the end-user
programmer a lot more autonomy in what is matched, and how it is matched and
reported, than competing tools do.

6.1 Future work

While Coccinelle can be used to find bugs in several categories, there are several aspects
of Coccinelle that could easily be improved to better find bugs.

The easiest addition would most likely be to complete the remaining corner cases
of the expression-based control flow graph implementation. This would allow us to
match most of the bugs that we missed in Chapter 4 and Chapter 5.

Generalised constant propagation has shown itself to be inadequate for reliably
finding bugs, and in particular in discarding false positives, on the Linux kernel. Im-
plementing a stronger analysis such as symbolic range propagation that could handle
sizeof symbolically rather than by value, would allow us to discard many of the false
positives we found for buffer overflows in the Linux kernel and more accurately label
the problematic cases that contain bugs.

A great boon for the accuracy of Coccinelle would be to add algorithms for prun-
ing infeasible paths. This would avoid several of the remaining false positives we
encountered when analysing the Linux kernel.1

Lastly, improved support for matching interprocedurally using Coccinelle would
help in many cases, e.g. by alleviating the user of the need to specify all kinds of
permutations for where an array may be defined and its subsequent use. Our decision
not to implement all these permutations as semantic patches has meant that we were
unable to discover many of the buffer overflows that Coverity found. Adding proper
interprocedural matching to Coccinelle is, however, most likely not easy, as it has been
designed for matching intraprocedurally.

1Coverity uses infeasible path pruning today to recognise several of the cases that we have found to
be false positives in Chapter 4 and Chapter 5. Their path pruning filters out numerous false positives as
described in detail by Kremenek et al. [2006].

Bibliography

[Alexander et al., 2002]: Roger T. Alexander, JeffOffutt, and JamesM. Bieman. Syntactic
fault patterns inOOprograms. In ICECCS ’02: Proceedings of the Eighth International
Conference on Engineering of Complex Computer Systems, pages 193–202,Washington,
DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1757-9. doi: http://doi.
ieeecomputersociety.org/10.1109/ICECCS.2002.1181512.

[Appel and Ginsburg, 1998]: Andrew W. Appel and Maia Ginsburg. Modern Compiler
Implementation in C. Cambridge University Press, 1998. ISBN 0-521-58390-X.

[Aslam, 1995]: Taimur Aslam. A taxonomy of software faults in the UNIX operating
system. Master’s thesis, Purdue University, August 1995.

[Aslam et al., 1996]: Taimur Aslam, Ivan Krsul, and Eugene H. Spafford. Use of a
taxonomy of security faults. In 19th NIST-NCSC National Information Systems
Security Conference, pages 551–560, 1996.

[Bae and Eigenmann, 2006]: Hansang Bae and Rudolf Eigenmann. Interprocedural
Symbolic Range Propagation for Optimizing Compilers, volume 4339 of Lecture Notes
in Computer Science, pages 413–424. Springer Berlin / Heidelberg, 2006. ISBN
978-3-540-69329-1. doi: 10.1007/978-3-540-69330-7_28.

[Bernstein and Duff, 1999]: Sheri J. Bernstein and Robert S. Duff. Optimizing Ada on
the fly. In SIGAda ’99: Proceedings of the 1999 annual ACM SIGAda international
conference on Ada, pages 169–179, New York, NY, USA, 1999. ACM. ISBN 1-58113-
127-5. doi: http://doi.acm.org/10.1145/319294.319321.

[Bisbey and Hollingworth, 1978]: Richard Bisbey and Dennis Hollingworth. Protection
analysis: Final report. Technical Report ISI/SR-78-13, Information Sciences Institute,
University of Southern California, May 1978.

[Bishop, 1995]: Matt Bishop. A taxonomy of UNIX system and network vulnerabilities.
Technical Report CSE-95-10, University of California at Davis, Davis, California,
USA, 1995.

[Blume and Eigenmann, 1996]: William Blume and Rudolf Eigenmann. Demand-
driven, symbolic range propagation. In LCPC ’95: Proceedings of the 8th Interna-
tional Workshop on Languages and Compilers for Parallel Computing, pages 141–160,
London, UK, 1996. Springer-Verlag. ISBN 3-540-60765-X.

91

92 BIBLIOGRAPHY

[Brunel et al., 2008]: Julien Brunel, Damien Doligez, René Rydhof Hansen, Julia L.
Lawall, and Gilles Muller. A foundation for flow-based program matching using
temporal logic and model checking. Technical Report 08/2/INFO, Ecole des Mines
de Nantes, Nantes, France, 2008.

[CAPEC]: CAPEC. Common Attack Pattern Enumeration and Classification. URL
http://capec.mitre.org/data/index.html. CAPEC is a collaborative effort and
is continually updated. This work refers to version 1.1 of the database.

[CERT]: CERT. Computer emergency response team. URL http://www.cert.org.

[Cousot and Cousot, 1977]: Patrick Cousot and Radhia Cousot. Abstract interpretation:
a unified lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 238–252, New York, NY,
USA, 1977. ACM. doi: http://doi.acm.org/10.1145/512950.512973.

[Coverity]: Coverity. Coverity prevent. URL http://coverity.com/html/about.

html. [Online; Retrieved on the 6th of August, 2008].

[CVE]: CVE. Common Vulnerability and Exposures. URL http://cve.mitre.org.

[CWE]: CWE. Common Weakness Enumeration. URL http://cwe.mitre.org/.
CWE is a collaborative effort and is continually updated. This work refers to draft 9
of the database.

[Engler et al., 2000]: Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem.
Checking system rules using system-specific, programmer-written compiler exten-
sions. In OSDI’00: Proceedings of the 4th conference on Symposium on Operating
System Design & Implementation, pages 1–16, Berkeley, CA, USA, 2000. USENIX
Association.

[Erosa and Hendren, 1994]: Ana M. Erosa and Laurie J. Hendren. Taming control flow:
A structured approach to eliminating goto statements. In Proceedings of the 1994
International Conference on Computer Languages, pages 229–240. IEEE Computer
Society, 1994. ISBN 0-8186-5640-X. doi: 10.1109/ICCL.1994.288377.

[Evans, 1996]: David Evans. Static detection of dynamic memory errors. In PLDI
’96: Proceedings of the ACM SIGPLAN 1996 conference on Programming language
design and implementation, pages 44–53, New York, NY, USA, 1996. ACM. ISBN
0-89791-795-2. doi: http://doi.acm.org/10.1145/231379.231389.

[Ghiya, 1998]: Rakesh Ghiya. Putting Pointer Analysis to Work. PhD thesis, School of
Computing, McGill University, Montreal, May 1998.

[Ghiya and Hendren, 1998]: Rakesh Ghiya and Laurie J. Hendren. Putting pointer
analysis to work. In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 121–133, New York, NY,

http://capec.mitre.org/data/index.html
http://www.cert.org
http://coverity.com/html/about.html
http://coverity.com/html/about.html
http://cve.mitre.org
http://cwe.mitre.org/

BIBLIOGRAPHY 93

USA, 1998. ACM. ISBN 0-89791-979-3. doi: http://doi.acm.org/10.1145/268946.
268957.

[Gosling et al., 2005]: James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification. Addison-Wesley Professional, 3rd edition, 2005. ISBN
0321246780. URL http://java.sun.com/docs/books/jls/.

[Hansman and Hunt, 2005]: Simon Hansman and Ray Hunt. A taxonomy of network
and computer attacks. Computers & Security, 24(1):31–43, February 2005.

[Harrison, 1977]: W. H. Harrison. Compiler analysis of the value ranges for variables.
IEEE Transactions on Software Engineering, 3(3):243–250, 1977. ISSN 0098-5589. doi:
http://dx.doi.org/10.1109/TSE.1977.231133.

[Hovemeyer and Pugh, 2004]: David Hovemeyer and William Pugh. Finding bugs
is easy. In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications, pages 132–136,
New York, NY, USA, 2004. ACM. ISBN 1-58113-833-4. doi: http://doi.acm.org/10.
1145/1028664.1028717.

[Huth and Ryan, 2004]: Michael Huth and Mark Ryan. Logic in Computer Science:
Modelling and Reasoning about Systems. Cambridge University Press, New York, NY,
USA, 2004. ISBN 052154310X.

[Jones and Hansen, 2007]: Neil D. Jones and René Rydhof Hansen. The semantics of
"semantic patches" in Coccinelle: Program transformation for the working program-
mer. In Zhong Shao, editor, APLAS ’07: Proceedings of the 5th Asian Symposium on
Programming Languages and Systems, volume 4807 of Lecture Notes in Computer
Science, pages 303–318. Springer, November 2007. ISBN 978-3-540-76636-0. doi:
http://dx.doi.org/10.1007/978-3-540-76637-7_21.

[Jones et al., 1993]: Neil D. Jones, C. K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International, June 1993. ISBN
0-13-020249-5. URL http://www.dina.kvl.dk/~sestoft/pebook/pebook.html.

[Kildall, 1973]: Gary A. Kildall. A unified approach to global program optimization.
In POPL ’73: Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 194–206, New York, NY, USA, 1973. ACM.
doi: http://doi.acm.org/10.1145/512927.512945.

[Killourhy et al., 2004]: Kevin S. Killourhy, Roy A. Maxion, and Kymie M. C. Tan. A
defense-centric taxonomy based on attack manifestations. In DSN ’04: Proceedings
of the 2004 International Conference on Dependable Systems and Networks, pages
102–111, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2052-9.

[Kremenek et al., 2006]: Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng,
and Dawson Engler. From uncertainty to belief: inferring the specification within.

http://java.sun.com/docs/books/jls/
http://www.dina.kvl.dk/~sestoft/pebook/pebook.html

94 BIBLIOGRAPHY

In OSDI ’06: Proceedings of the 7th symposium on Operating systems design and
implementation, pages 161–176, Berkeley, CA, USA, 2006. USENIX Association.
ISBN 1-931971-47-1.

[Krsul, 1998]: Ivan Victor Krsul. Software Vulnerability Analysis. PhD thesis, Purdue
University, May 1998.

[Landwehr et al., 1994]: Carl E. Landwehr, Alan R. Bull, John P. McDermott, and
William S. Choi. A taxonomy of computer program security flaws. ACM Comput.
Surv., 26(3):211–254, 1994. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/185403.
185412.

[Larochelle and Evans, 2001]: David Larochelle and David Evans. Statically detecting
likely buffer overflow vulnerabilities. In SSYM’01: Proceedings of the 10th conference
on USENIX Security Symposium, pages 14–14, Berkeley, CA, USA, 2001. USENIX
Association.

[Lawall et al., 2008]: Julia L. Lawall, Julien Brunel, René Rydhof Hansen, Henrik Stuart,
and Gilles Muller. WYSIWIB: A declarative approach to finding protocols and bugs
in Linux code. Technical Report 08/1/INFO, Ecole des Mines de Nantes, Nantes,
France, 2008.

[ISO/IEC 14882:1998]: ISO/IEC 14882:1998. Programming Languages — C++. Interna-
tional Organization for Standardization, Geneva, Switzerland, 1998.

[ISO/IEC 8652:2007(E)]: ISO/IEC 8652:2007(E). Ada Reference Manual: ISO/IEC
8652:2007(E) with Technical Corrigendum 1 and Amendment 1. International Organi-
zation for Standardization, Geneva, Switzerland, 3rd edition, 2007.

[ISO/IEC 9899:1990]: ISO/IEC 9899:1990. Programming languages — C. International
Organization for Standardization, Geneva, Switzerland, 1990.

[ISO/IEC 9899:1999]: ISO/IEC 9899:1999. Programming languages — C. International
Organization for Standardization, Geneva, Switzerland, 1999.

[Lindqvist and Jonsson, 1997]: Ulf Lindqvist and Erland Jonsson. How to systemati-
cally classify computer security intrusions. In SP ’97: Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pages 154–163, Washington, DC, USA, 1997.
IEEE Computer Society.

[Lippmann et al., 2000]: Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua W.
Haines, Kristopher R. Kendall, David McClung, DanWeber, Seth E. Webster, Dan
Wyschogrod, Robert K. Cunningham, and Marc A. Zissman. Evaluating intrusion
detection systems: the 1998 DARPA off-line intrusion detection evaluation. In
DISCEX ’00: DARPA Information Survivability Conference and Exposition, volume 2,
pages 12–26. IEEE Computer Society, 2000. ISBN 0-7695-0490-6. doi: 10.1109/
DISCEX.2000.821506.

BIBLIOGRAPHY 95

[Lough, 2001]: Daniel Lowry Lough. A taxonomy of computer attacks with applications
to wireless networks. PhD thesis, Virginia Polytechnic Institute and State University,
2001.

[Martin and Barnum, 2008]: Robert A. Martin and Sean Barnum. Common weakness
enumeration (CWE) status update. Ada Lett., XXVIII(1):88–91, 2008. ISSN 1094-
3641. doi: http://doi.acm.org/10.1145/1387830.1387835.

[Martin et al., 2006]: Robert A.Martin, StevenM.Christey, and Joe Jarzombek. The case
for Common Flaw Enumeration. In Elizabeth Fong, editor, SSATTM ’05: Proceedings
of Workshop on Software Security Assurance Tools, Techniques, and Metrics. U.S.
National Institute of Standards and Technology (NIST), February 2006.

[Møller, 1994]: Peter Lützen Møller. Run-time check elimination for Ada 9x. In
TRI-Ada ’94: Proceedings of the conference on TRI-Ada ’94, pages 122–128, New York,
NY, USA, 1994. ACM. ISBN 0-89791-666-2. doi: http://doi.acm.org/10.1145/197694.
197713.

[Necula et al., 2002]: George C. Necula, Scott McPeak, Shree Prakash Rahul, and
Westley Weimer. CIL: Intermediate language and tools for analysis and transforma-
tion of C programs. In CC ’02: Proceedings of the 11th International Conference on
Compiler Construction, pages 213–228, London, UK, 2002. Springer-Verlag. ISBN
3-540-43369-4.

[Necula et al., 2005]: George C. Necula, Jeremy Condit, MatthewHarren, ScottMcPeak,
and Westley Weimer. CCured: type-safe retrofitting of legacy software. ACM
Transactions on Programming Languages and Systems (TOPLAS), 27(3):477–526,
2005. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/1065887.1065892.

[Nethercote and Seward, 2007a]: Nicholas Nethercote and Julian Seward. Valgrind: A
framework for heavyweight dynamic binary instrumentation. In Proceedings of ACM
SIGPLAN 2007 Conference on Programming Language Design and Implementation
(PLDI 2007), New York, NY, USA, 2007a. ACM.

[Nethercote and Seward, 2007b]: Nicholas Nethercote and Julian Seward. How to
shadow every byte of memory used by a program. In VEE ’07: Proceedings of the 3rd
international conference on Virtual execution environments, pages 65–74, New York,
NY, USA, 2007b. ACM. ISBN 978-1-59593-630-1. doi: http://doi.acm.org/10.1145/
1254810.1254820.

[Nielson et al., 1999]: Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Princi-
ples of Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.
ISBN 3540654100.

[Padioleau et al., 2006a]: Yoann Padioleau, René Rydhof Hansen, Julia L. Lawall,
and Gilles Muller. Semantic patches for documenting and automating collateral
evolutions in Linux device drivers. In PLOS ’06: Proceedings of the 3rd workshop on

96 BIBLIOGRAPHY

Programming languages and operating systems, New York, NY, USA, 2006a. ACM.
ISBN 1-59593-577-0. doi: http://doi.acm.org/10.1145/1215995.1216005.

[Padioleau et al., 2006b]: Yoann Padioleau, Julia L. Lawall, and Gilles Muller. SmPL: A
domain-specific language for specifying collateral evolutions in Linux device drivers.
In International ERCIMWorkshop on Software Evolution (2006), Lille, France, April
2006b.

[Padioleau et al., 2006c]: Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Under-
standing collateral evolution in Linux device drivers. In The first ACM SIGOPS
EuroSys conference (EuroSys 2006), pages 59–71, Leuven, Belgium, April 2006c. Also
available as INRIA Research Report RR-5769.

[Padioleau et al., 2007]: Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Semantic
patches, documenting and automating collateral evolutions in Linux device drivers.
In Ottawa Linux Symposium (OLS 2007), Ottawa, Canada, June 2007.

[Patterson, 1995]: Jason R. C. Patterson. Accurate static branch prediction by value
range propagation. In PLDI ’95: Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, pages 67–78, New York, NY, USA,
1995. ACM. ISBN 0-89791-697-2. doi: http://doi.acm.org/10.1145/207110.207117.

[Polepeddi, 2004]: Sriram S. Polepeddi. Software vulnerability taxonomy consolidation.
Master’s thesis, Carnegie Mellon University, December 2004.

[Seward andNethercote, 2005]: Julian Seward andNicholasNethercote. UsingValgrind
to detect undefined value errors with bit-precision. In Proceedings of the USENIX’05
Annual Technical Conference, pages 17–30, Berkeley, CA, USA, April 2005. USENIX
Association.

[Stuart et al., 2007]: Henrik Stuart, René Rydhof Hansen, Julia L. Lawall, Jesper Ander-
sen, Yoann Padioleau, and Gilles Muller. Towards easing the diagnosis of bugs in OS
code. In PLOS ’07: Proceedings of the 4th workshop on Programming languages and op-
erating systems, pages 1–5, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-922-7.
doi: http://doi.acm.org/10.1145/1376789.1376792.

[Tsipenyuk et al., 2006]: Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven
pernicious kingdoms: A taxonomy of software security errors. In Elizabeth Fong,
editor, SSATTM ’05: Proceedings of Workshop on Software Security Assurance Tools,
Techniques, and Metrics. U.S. National Institute of Standards and Technology (NIST),
February 2006.

[Verbrugge et al., 1996]: Clark Verbrugge, Phong Co, and Laurie J. Hendren. Gen-
eralized constant propagation: A study in C. In CC ’96: Proceedings of the 6th
International Conference on Compiler Construction, pages 74–90, London, UK, 1996.
Springer-Verlag. ISBN 3-540-61053-7. doi: 10.1007/3-540-61053-7_54.

BIBLIOGRAPHY 97

[Wagner et al., 2000]: David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander
Aiken. A first step towards automated detection of buffer overrun vulnerabilities.
In Network and Distributed System Security Symposium, pages 3–17, San Diego, CA,
February 2000.

[Weaver et al., 2003]: Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert
Cunningham. A taxonomy of computer worms. InWORM ’03: Proceedings of the
2003 ACMworkshop on Rapid malcode, pages 11–18, New York, NY, USA, 2003. ACM.
ISBN 1-58113-785-0. doi: http://doi.acm.org/10.1145/948187.948190.

[Weber, 1998]: Daniel James Weber. A taxonomy of computer intrusions. Master’s
thesis, Massachusets Institute of Technology, June 1998.

[Würthinger et al., 2007]: Thomas Würthinger, Christian Wimmer, and Hanspeter
Mössenböck. Array bounds check elimination for the Java HotSpot™client compiler.
In PPPJ ’07: Proceedings of the 5th international symposium on Principles and practice
of programming in Java, pages 125–133, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-672-1. doi: http://doi.acm.org/10.1145/1294325.1294343.

[Xie et al., 2003]: Yichen Xie, Andy Chou, and Dawson Engler. Archer: using symbolic,
path-sensitive analysis to detect memory access errors. ACM SIGSOFT Software
Engineering Notes, 28(5):327–336, 2003. ISSN 0163-5948. doi: http://doi.acm.org/10.
1145/949952.940115.

Acknowledgements

First and foremost I would like to thank the Coccinelle team for providing an interesting
and stimulating work environment. In particular I would like to thank René Rydhof
Hansen for getting me off to the best possible start on my thesis, and to my advisor
Julia L. Lawall who has gone beyond what could be expected in promptly answering
all my many questions at all hours of the day—if only all advisors were as responsive.
The collaboration with the Coccinelle team in writing the article [Stuart et al., 2007]
also provided me with a thorough refresher in academic writing and a fascinating look
at the peer review process—being ‘at the other side of the fence’ for once was very
educational. The Coccinelle team’s interest in the solutions I have produced as part of
my thesis have been overwhelming, and made my work seem much more relevant. I
have been more than happy to integrate several of the extensions I have developed into
the official version.

Lastly, I would like to thank my wonderful wife and our unborn child for being
there every single day and with a smile ensuring me that I could manage one more day
of writing this thesis. You have made my life and this thesis better than it would have
been in your absence.

Typeset using pdftex with microtypographic and hyperref extensions.
Illustrations created in TikZ.

Front page design by Henrik Stuart.
Faculty of Natural Sciences logo by Pete Burke.

Text composed in 11/13 pt Adobe Minion Pro.
Titles composed in Adobe Myriad Pro.
Mathematics composed in MnSymbol.

Adobe Minion Pro was designed by Robert Slimbach in 1990. Adobe Myriad Pro was
designed by Robert Slimbach & Carol Twombly with Fred Brady & Christopher Slye
in 1992. MnSymbol was designed by Achim Blumensath.

§

	Introduction
	Coccinelle
	Program analysis
	Outline of the thesis

	Bug taxonomy
	Previous work
	Extending the Common Weakness Enumeration taxonomy

	Extending Coccinelle
	Scripting Coccinelle
	Data flow analysis
	Avoiding false positives in use-after-free
	Functions provided for Python by Coccinelle
	Completing the taxonomy elements

	Results
	Investigating the results of our extensions
	Linux 2.6
	Other code-bases
	Summary

	Comparing Coccinelle to other bug finders
	Coverity and Linux 2.6
	Splint, Valgrind and the other code-bases
	Summary

	Conclusion
	Future work

	Bibliography
	Acknowledgements
	Colophon

