
Bachelor’s Thesis : Finding Bugs in Open
Source Software using Coccinelle

Sune Rievers - sunerievers@stud.ku.dk
Supervisor: Julia Lawall

January 13, 2010

1

Contents

1 Abstract 4

2 Preface 5

3 Acknowledgments 5

4 Introduction 6
4.1 Background and motivation 6
4.2 Problem definition . 6
4.3 Scope . 6
4.4 Intended audience . 6

5 Analysis of Coccinelle 8
5.1 General description of Coccinelle 8
5.2 Static analysis . 8
5.3 Cocci files (scripting) . 8

6 Bug classification 11

7 Description of OpenSSL 12
7.1 Why this software project is interesting 12
7.2 Particular bugs in project . 12

8 Bug hunting 13
8.1 Using pre-made semantic patches 13
8.2 Bug type analysis . 16
8.3 Creating new scripts . 17
8.4 Reception from the community 19
8.5 Dealing with false positives . 20

9 Evaluation of Coccinelle 21
9.1 Usage . 21
9.2 Usability . 21
9.3 Technical results . 22

10 Related work 24
10.1 Coverity Prevent . 24
10.2 PolySpace Verifier . 25
10.3 Klocwork K7 . 26
10.4 CP-Miner/PR-Miner . 26

2

11 Conclusion 28

A Bibliography 29

B Appendix 31
B.1 OpenSSL CVE Reports . 31
B.2 Pre-made Patches . 32
B.3 Custom Patches . 44

3

1 Abstract

Coccinelle is a framework developed for semantic patching of C code, to allow
automated transformations of code. Originally this was done with regards
to driver implementations in Linux kernel code.

Coccinelle could possibly be used for other uses as well, e.g. finding bugs
in software. I have been examining this, by applying Coccinelle to the Open
Source security project OpenSSL.1 I have compared the results of Coccinelle
to results from other software, to determine Coccinelle’s applicability towards
finding bugs.

As others have experienced,2 Coccinelle is perfectly applicable for finding
bugs, and I have found bugs using Coccinelle which other static analyzers
have not.

Compared to other related software, Coccinelle has been able to find 37
defects in OpenSSL, where the commercial product Coverity Prevent has
found 36. This indicates that Coccinelle is indeed very suitable for bug
finding.

All bugs have been reported to the OpenSSL community, after thorough
manual inspection. I have received some feedback, but none of my patches
has been applied to OpenSSL at the time of concluding this report.

1More information on OpenSSL can be found in Section 7 and on
http://www.openssl.org

2The Coccinelle web site has a list of bugs found and patches applied to various software,
amongst other the Linux kernel.

4

2 Preface

This report concludes the 15 ECTS Bachelor’s thesis course at DIKU.3

The author is Sune Rievers, student of Computer Science at DIKU. The
supervisor is Julia Lawall, an associate professor working in the APL group
at DIKU.

3 Acknowledgments

I would like to thank my supervisor, Julia Lawall, who has been available for
many helpful comments and guidance, even at weekends and late at night
during the course of this project. Also I would like to thank the Coccinelle
team, especially Nicolas Palix for advice regarding Python and the scripting
of semantic patches. The process of being involved in a project like this has
been very educational, and I hope that this report may help Coccinelle in
any way possible.

3DIKU stands for ”Datalogisk Institut Københavns Universitet” or Institute of Com-
puter Science at University Copenhagen.

5

4 Introduction

It is a well known fact that software is full of bugs, and even though the
source code of Open Source software is potentially read by more people than
closed source, a lot of bugs remain undetected. Furthermore, when a bug is
found, it is hard to locate similar bugs unless their syntax matches exactly.

4.1 Background and motivation

Using Coccinelle, a tool developed at DIKU and the Ecole des Mines de
Nantes for semantic patching of C code, it is possible to use semantic patches
4 to search for code defects. Each case (defect type) has to be specifically
tailored by the user into semantic patches.

4.2 Problem definition

Coccinelle has been designed for doing matching and transformations in
Linux code, and therefore it is interesting to know whether it can be ap-
plied to other types of software as well. If the project is a success, it might
open Coccinelle for bug finding in all sorts of software.

The main question we need to answer in this project, is: Is it possible
to apply Coccinelle to other uses than Linux Kernel code, and what is the
reward of doing this?

4.3 Scope

I have put my emphasis on analyzing bugs and writing Coccinelle scripts, as
I have seen this as the main purpose of this project. Analyzing Coccinelle
and its ability to find bugs using semantic searching is also very important.

Fixing bugs has been a minor part of the project, and has not originally
received as much attention as locating them. I have however spent quite some
time learning the syntax of Coccinelle, and also in writing and modifying
semantic patches for finding bugs.

4.4 Intended audience

Readers of this report should be familiar with basic C programming, types
of code defects, and some compiler theory, like memory allocation and use
of pointers. Students of Computer Science would be an ideal audience, at

4The scripting language of Coccinelle uses files called semantic patches. See Section
5.3 for more information on semantic patches.

6

least ones that have completed basic courses in compiler theory and machine
architecture.

7

5 Analysis of Coccinelle

5.1 General description of Coccinelle

Coccinelle deals with the problem of collateral code evolutions [8]. When
an interface changes (e.g. for a driver or an API function), there are mul-
tiple places where code needs to be adapted to the new interface or coding
style. These adaptations are collateral evolutions. Using Coccinelle it is
possible to create scripts called semantic patches (SP), that perform these
transformations.

It is also possible to use semantic patches to find code defects in software,
as this is basically a pattern matching activity. The Coccinelle web site [8]
has many examples of bugs found using Coccinelle. Users of Coccinelle have
for example found and corrected many defects in Linux kernel code, and
these patches have been applied to the official kernel tree.

5.2 Static analysis

When finding code defects in software, one can try several approaches: Test-
ing live code (debugging), manual inspection of source code and static anal-
ysis. Coccinelle deals with the latter.

Static analysis is a type of analysis that does not need the code to be
compiled and executed to be analyzed. It can be used on partial code, code
that needs Internet access to work, and code that is too dangerous to actually
compile and run (e.g. virus or malware software). While testing only reveals
defects in the actual executed code paths, static analysis can potentially find
defects in all code paths, even infeasible ones. Static analysis can be used to
detect defective code constructs, as well as improper use of API functions,
invalid naming of variables according to a coding standard and much more.

Static analysis can be automated, for instance, running in an interactive
build script or during a nightly build operation. The results can then be
emailed to the person responsible for manual inspection. Testing and manual
code inspection needs an actual person to perform the work and is very
time consuming. Furthermore, testing can only be applied rather late in
the process (when the code actually compiles and runs). Of course, static
analysis can also be used as a stand alone tool, like testing.

5.3 Cocci files (scripting)

The language in which Coccinelle semantic patches are written, is called the
Semantic Patch Language (SmPL). SmPL has some similarities to the syntax

8

of standard patches,5 with added temporal logic and support for metavari-
ables. Metavariables are a kind of variables in a semantic patch, which act
as placeholders for normal variables, functions and expressions. This means,
for instance, that one can match any given function by using a metavariable,
and then refer to that same function later on in the semantic patch. See
Figure 1 as an example of a semantic patch using a metavariable. In this
figure, E is a placeholder for an arbitrary expression, that will be removed
along with the call to free and inserted with a new call to OPENSSL free. 6

@@

expression E;

@@

- free(E);

+ OPENSSL_free(E);

Figure 1: Part of malloc style.cocci

Metavariables make it possible to abstract over irrelevant subterms, mak-
ing it possible, e.g. to find all functions that have a particular structure or
usage pattern. Similarly for variables, you could for instance find all occur-
rences of a variable of a certain type or one that is never assigned a value,
or is never used like in the unused SP. In other words, one is not restricted
to the basic adding and removal of text lines like in standard patches.

SmPL has been extended with Python support by Henrik Stuart as part
of his Master’s Thesis [14]. This extension means that not only is it possible
to modify code using + and − for adding and removing code patterns,7

scripting is also possible, for instance to allow the results to be filtered or
inserted in a database for further analysis.

SmPL is quite an extensive language, and is described in full on the web
site, including both a grammar and a tutorial [8], which is why I have only
given a brief summary in this report.

As many code constructs are semantically similar, for instance i = i + 1
is the same as i + +, Coccinelle has a isomorphism method that is a form

5A standard patch is a file used for expressing the difference between two sets of text,
e.g. two different versions of a source code file. Standard patches are in general just
called patches, but I will call them standard patches in this report to avoid confusion with
semantic patches.

6See Appendix B.3 for the full semantic patch.
7Like in a standard patch, where + and − signifies the adding and removal of code

lines.

9

of macro expansion, so that all possible code is checked, when searching for
one out of several semantically similar code expressions.

10

6 Bug classification

In order to deal with code defects in a systematic and uniform way, a taxon-
omy is often used. A taxonomy is a classification scheme, which can be used
to organize or order objects of its domain. There are many examples of these,
but I have chosen the CWE standard [10], as it seems to have widespread
support in industry. Also I think it is important to be able to have a standard
method of classification.

In Section 7.2, I used the CWE as basis for some statistical analysis, in
order to determine which defect types are most dominant in OpenSSL.

The CWE has also given me some inspiration for creating patches. For
instance, on the CWE web site there is a list of common weaknesses in C
programming [11]. This has been partially used for examples of use after free
in my semantic patch use after free.

Many of the defect types from the CWE C specific list are already covered
by the generic patches on the Coccinelle web site, but there are also a lot
that aren’t covered by the generic patches, for instance vulnerabilities about
temporary files and Windows-specific code defects.

11

7 Description of OpenSSL

I have chosen OpenSSL 8 as the subject of my evaluation, as it is both Open
Source and widely used.

OpenSSL is a library and a toolkit, and is used in a lot of Open Source
software, including email servers, web servers and VPN software.

The OpenSSL project was started in 1999, and is based on SSLeay by Eric
Young. Eric Young still hold copyright to parts of the code, which is noted
several places in the OpenSSL source code. If someone is to use OpenSSL
in a software project, Eric Young’s original license still applies, and must be
included with the new software.

The OpenSSL development team consists of eleven developers, of which
four are on the core team and manage the OpenSSL project. The core team
also coordinates the mailing lists, as well as OpenSSL announcements.

As a version control system, OpenSSL uses CVS, which has read-only
access for anonymous users. I have used the CVS repository as basis for my
bug finding, as well as their official releases.

Patches are generally submitted to the OpenSSL development mailing
list, and in some cases also to the public Request Tracker.9

7.1 Why this software project is interesting

I learned that OpenSSL contained a lot of bugs, and since I knew that it was
used in a wide range of software, I thought it would be useful and interesting
to help out, and to learn about the various bug types in OpenSSL. I am also
a big fan and supporter of Open Source, and would like to improve this by
finding and fixing code defects in Open Source software.

7.2 Particular bugs in project

OpenSSL has a public list of fixed vulnerabilities on their web page, based
on CVE reports [12]. I have looked at this list, and classified them according
to the CWE [10]. The list is in Figure 9 in Appendix B.1.

The most predominant defect type is “CWE 20: Improper Input Vali-
dation”, which represents 14 of the 31 CWE classifications on my list. In
second and third place are NULL pointer dereference and buffer overflow.
The rest are in very different categories, ranging from highly domain-specific
bugs such as “CWE-347: Improper Verification of Cryptographic Signature”
to more common ones like “CWE-415: Double Free”.

8More information on OpenSSL can be found on http://www.openssl.org
9OpenSSL has a public list of bugs on http://rt.openssl.org/NoAuth/Buglist.html

12

8 Bug hunting

8.1 Using pre-made semantic patches

The people behind Coccinelle has created some generic bug-finding semantic
patches, which I have used as the starting point of my project. Some of these
are Linux or kernel specific, but I have only dealt with the truly generic ones.
A brief overview of these is as follows.

The badzero SP deals with noncompliance of best practice, where pointers
are compared to literal 0 instead of NULL. This semantic patch returned five
cases on the current release version, and no false positives.10 These were
submitted to the OpenSSL community. Later, I ran it on the CVS version,
which gave a sixth result. This was also submitted. An example of a bug
found with this SP is in Figure 2.

- if ((m == 0) || (r == 0) || (f == 0))

+ if ((m == NULL) || (r == NULL) || (f == NULL))

return 0;

Figure 2: Example of a badzero bug

Most rewarding has been the notnull SP. The notnull SP deals with a
NULL test on an already tested (known to be not-NULL) value, which is
redundant. It has found 11 defects in a release version of OpenSSL, of which
none were false positives.

The find unsigned SP has found the same error in multiple versions of
OpenSSL, as shown in Figure 6. This is a case where an unsigned integer is
tested for a value below zero, which of course is pointless. It seems that the
reason for using an unsigned type is because the variable is assigned a value
from a function that returns an unsigned value, so the variable can never
have a value below zero. The check below zero i probably left over from a
point where the variable were assigned differently, or perhaps the function
had a different return type in the API. On the other hand, if an unsigned
variable was used, and the called function were to return a negative value in
case of error, this would indicate a serious problem. This bug has also been
submitted to the OpenSSL community.

The andand SP is a very simple case that detects expressions where &&
and || are mixed up, for instance in these constructs:

10A false positive is when valid code is incorrectly detected as defective. See Section 8.5
for more information about dealing with false positives.

13

a) if (!E && E->fld) ...

b) if (E || E->fld) ...

In these cases, the author probably meant to replace && with || in a, and
vice versa in b. Otherwise, E->fld would be derefenced only in cases where
E is NULL.

The isnull SP is a bit like andand, where an expression is checked to
be NULL and subsequently dereferenced. This could for instance be an if-
statement that checks if a variable is NULL, and in that case dereferenced.
This could lead to some serious errors, and as Figure 3 shows, I found an
example of this defect in the CVS version of OpenSSL.

Null ref is a semantic patch that detects a dereference followed by a NULL
check, when this should have been reversed. The mini null ref mini null ref2
are simpler versions of this test, dealing with special cases of null ref. These
semantic patches search for a more specific, localized pattern, so they have
lower rate of false positives. As they are simpler, they are also faster to run,
and easier to analyze. I have found no matches in any of my tests, so I assume
that they are too Linux specific, or deal with code constructs unfamiliar to
OpenSSL.

I have used the generic semantic patches from the Coccinelle website,
and applied these to the release version of OpenSSL, as well as the CVS one.
Results are displayed in Figure 3 and 4.

Cocci script Bugs found False positives
andand 0 0
badzero 5 0

find unsigned 0 0
isnull 0 0

mini null ref 0 0
mini null2 ref 0 0

notand 0 0
notnull 11 0
null ref 0 0

Figure 3: Results from running the generic semantic patches on the 0.9.8j
version of OpenSSL

The null ref SP reported a false positive, as shown in Figure 5. If tree
was NULL, the function would have returned immediately after the call to
OPENSSL malloc. However, the SP sees the assignments of tree’s properties

14

Cocci script Bugs found False positives
andand 0 0
badzero 6 0
continue 2 0

find unsigned 1 0
isnull 1 0

mini null ref 0 0
mini null2 ref 0 0

notand 0 0
notnull 10 0
null ref 5 1

Figure 4: Results from running the generic semantic patches on the CVS
(rev. 17904) version of OpenSSL

as dereferences, and the following NULL check as an improper order, and
detects this as a defect. This is in fact a not null bug, and has also been
detected by the not null SP.

Regarding false negatives,11 there are probably some, since I would not
assume that my semantic patches have found all types of every bug tested
for. There could very well be some defects that were not found, but these
might be found using other SP’s or even other tools. Regarding the pre-made
SP’s from Coccinelle web site, I assume they have a rather low rate of false
negatives. For instance, the badzero and find unsigned SP’s are so simple
and concise, that I would not expect them to have any false negatives at all.

In each case, I have submitted my findings to the OpenSSL mailing list,
after manual verification. The first report did not receive much attention,
presumably since I used the release version of OpenSSL as target of my
scanning, so many of the bugs I found had already been fixed in the CVS
(development) version of OpenSSL.

Therefore, I downloaded the latest CVS version, and reran my tests on
this version. Some bugs were however still present, so I resubmitted those to
OpenSSL, and stated that I had used the current CVS version, to get more
attention this time.

11A false negative is when defective code is incorrectly labeled as valid code, or the
opposite of a false positive.

15

tree = OPENSSL_malloc(sizeof(X509_POLICY_TREE));

if (!tree)

return 0;

tree->flags = 0;

tree->levels = OPENSSL_malloc(sizeof(X509_POLICY_LEVEL) * n);

tree->nlevel = 0;

tree->extra_data = NULL;

tree->auth_policies = NULL;

tree->user_policies = NULL;

if (!tree)

{

OPENSSL_free(tree);

return 0;

}

Figure 5: Example of null ref false positive

8.2 Bug type analysis

I have looked through the CVS commit comments, the website and the mail-
ing list to determine which kind of bugs are common in OpenSSL. I have also
done some statistical analysis, in order to know which bugs are dominant in
OpenSSL, this was described in Section 7.2.

I discovered from reading the OpenSSL FAQ and mailing list archives
that Valgrind, Purify and Coverity have already been applied to OpenSSL
12, so a lot of the obvious errors have probably already been fixed, which I
assume is the reason that my initial bug count was relatively low.

However, OpenSSL is still a living product, and new bugs are introduced
constantly. For instance, the badzero SP found one more bug in the CVS
and the beta release than in the 0.9.8j stable release.

There are a lot of application-specific issues on the mailing list, e.g. when
someone is adapting OpenSSL or using it in a specific project. These seem
to be very specific to the task at hand, and not general defects as such.

I also noticed that there are a lot of stale bug reports on the OpenSSL
issue tracker system, some of which have not been updated for 5 years. I
assume that this is because they are either not relevant anymore, or because

12See Section 10.1 on page 25 for more information about the effort with Coverity

16

unsigned int ret;

if (ret < 0)

{

IBMCAerr(IBMCA_F_IBMCA_RAND_BYTES,

IBMCA_R_REQUEST_FAILED);

goto err;

}

Figure 6: Example of a find unsigned bug

they are invalid (i.e. not a bug or not reproducible). On the mailing list,
there is a lot of focus on getting the critical bugs fixed, and mails about
memory leaks or security issues are dealt with promptly and seriously.

As mentioned in Section 7.2, most of the critical bugs deal with input
validation and NULL pointer dereferencing. Input validation is very specific
and needs special care in handling each case, whereas NULL pointer derefer-
encing could be detected using the null ref or isnull SP’s from the Coccinelle
web site.

8.3 Creating new scripts

After running the pre-made semantic patches, I wanted to find more types
of defects, so I created the following new Coccinelle scripts (The scripts are
shown in full in Appendix B.3):

• malloc style

• use after free

• openssl malloc free

• openssl malloc

As the figures show, there are not many false positives, if any. The
malloc style SP in Figure 7 has an unknown rate of false positives, as I have
not been able to find documentation of where OPENSSL malloc should be
used, and where the general malloc function should be used.

I went through the OpenSSL source code to see if any special OpenSSL
API functions were used. I noticed that OpenSSL uses some wrapper meth-
ods for memory allocation (malloc) and deallocation (free) called OPENSSL malloc
and OPENSSL free, so I took two malloc-related semantic patches from the

17

Cocci script Bugs found False positives
andand 0 0
badzero 6 0
continue 2 0

find unsigned 1 0
isnull 0 0

mini null ref 0 0
mini null2 ref 0 0

notand 0 0
notnull 7 0
null ref 0 0

malloc style* 19 ?
openssl malloc* 1 0
use after free* 2 1

Figure 7: Results from running the generic and custom semantic patches on
the beta2 version of OpenSSL. Semantic patches generated by me are marked
with a *.

Coccinelle web site and modified these to fit the OpenSSL wrapper methods
and error handling:

Malloc is a semantic patch that detects a case where a pointer is not freed
upon returning of the function, in this case I exchanged calls to malloc and
free with the OpenSSL equivalents13. In OpenSSL, it is common to have an
error label in large functions, that when an error occurs, is jumped to via a
goto statement. In many cases this can lead to leaks, as allocated memory
is not always freed upon a return. Therefore I added a case where a goto
was used. Before each return in the function I added the missing call to
OPENSSL free, so that the variable would always be freed. This semantic
patch has been named openssl malloc.14

Malloc free is a semantic patch that detects a case where an allocated
variable is not freed upon an error return. In this case I also replaced the
malloc and free function calls like in the malloc SP. As openssl malloc already
deals with the error label path, this SP only deals with real error conditions.
This semantic patch has been named openssl malloc free.15

13malloc is replaced with OPENSSL malloc and free is replaced with OPENSSL free to
fit the OpenSSL standard way of allocating memory

14See Appendix B.3 for this semantic patch.
15See Appendix B.3 for this semantic patch.

18

This detected some cases where memory was not freed when returning on
error conditions and otherwise.

I then modified the OPENSSL malloc and OPENSSL free patches, so
memory would be always freed before returning from the function.

Regarding use after free, I had some matches (6 when run on beta1 of
OpenSSL). On closer inspection I noticed that there were a lot of cases where
my patch had found this structure:

free(ptr);

ptr = NULL;

This is clearly not a use after free bug, but merely following good coding
style. If the pointer is not set to NULL, subsequent calls to free can lead to
an error condition, as the memory may be freed or occupied by other data. If
the pointer like in this case is explicitly set to NULL, the call to free will have
no effect. This is also recommended as best practice in the CERT C Secure
Coding Standard [13]. There is also the point that dereferencing a NULL
pointer only leads to a system or program crash, while dereferencing a freed
pointer (possibly pointing to other data), could be a serious security issue.
This is a very important issue as OpenSSL is a piece of security software.
Of course, the potential double free should be detected and removed, as this
would be redundant.

Therefore I added this structure to my use after free semantic patch after
each new call to free, which removed all of the false positives. Unfortunately
there were no real positives, so this SP detected zero defects on this version
of OpenSSL.

+ E = NULL;

8.4 Reception from the community

The OpenSSL community has not been overly positive in reception of my
patches, some have been ignored, and others have been deemed redundant.
For instance, I submitted a patch with extra null tests (from using the notnull
SP), and this was deemed an unnecessary change, as they like to keep to
standard ways of doing things, and removal of redundant checks has little
value over standards compliance.

After generating the custom scripts shown in Section 8.3, I submitted
them to the OpenSSL mailing list.

Both submissions have yet to to implemented in the OpenSSL source
tree, and I have not received any more replies to my submission, either on
the mailing list or in the request tracker.

19

8.5 Dealing with false positives

False positives, or when valid code is incorrectly marked as defective, is a
huge problem dealing with automated code defect analyzers. If you want
to eliminate false positives, you must be willing to spend more time writing
precise semantic patches or let the analyzer weed out the false positives. As
mentioned in [4], “Unfortunately precision usually depends on analysis time.
The more precise the analysis is, the more resource consuming it is, and the
longer it takes. Hence, precision must be traded for time of analysis”. False
positives have to be dealt with by hand, which is tedious and time consuming,
or by using a heuristic approach like Coverity does. The comparative study in
[4] states that it is likely that Coverity Prevent uses a probabilistic technique
involving Bayesian learning. As Coverity Prevent is closed source, it is not
possible to get total insight in this filtering technique. When false positives
always have a distinct structure, for instance in the case of my use after free
SP (where the pointer was set to NULL after the call to free, instead of being
assigned anew), it is possible to filter these results by adding this case to the
SP. This does not cause false negatives, as long as the filtering is done very
carefully.

If the static analyzer or bug finding system deals with the false positive
in some way, i.e. by filtering the false positives, the matches should not be
labeled as such, as the user is not presented with the detected false positive.
This approach can however still result in a false negative, if the filtering is
done wrong, and effectively hiding defective code. When using Coverity’s
approach, which uses aggressive filtering, there are probably false negatives,
as the user does not in general create the scripts used for defect finding, and
therefore does not know which false positives are filtered.

20

9 Evaluation of Coccinelle

9.1 Usage

Regarding the trivial bugs, such as dereferencing a NULL pointer, or compar-
ing a pointer to literal zero instead of NULL, Coccinelle is outstanding. The
resulting standard patches from my test contained no false positives. With
regards to more complicated bugs, using Coccinelle is harder, because writ-
ing these semantic patches is more complicated, but judging from running
the premade-scripts, Coccinelle is highly usable for this purpose as well.

When properly trained in using Coccinelle and the SmPL syntax, it is
possible to create semantic patches that detect very complex code defects,
spanning many lines of code, and finding defects that are virtually impossible
to find by means of manual code inspection. Simple patches like the notnull
semantic patch, has for instance detected this defect in OpenSSL, where a
redundant NULL check could be removed. The first and second NULL check
were almost 500 lines apart. This would have been almost impossible to find
by hand, or at least very time consuming. The defect is shown in Figure 8.

1693: tmptm=ASN1_UTCTIME_new();

1694: if (tmptm == NULL)

1695: {

1696: BIO_printf(bio_err,"malloc error\n");

1697: return(0);

1698: }

...

2192: if (tmptm != NULL)

2193: ASN1_UTCTIME_free(tmptm);

2194: if (ok <= 0)

Figure 8: Example of a notnull bug: apps/ca.c do body function

9.2 Usability

There exists a grammar of the Coccinelle semantic language, but for people
without extensive compiler knowledge (e.g. students of computer science),
this is probably too technical. There is also a tutorial on using SmPL on
the web site [8], to allow beginners to learn how to use Coccinelle. There
has also recently been established a wiki,[9] so that users can help each other
generating helpful content and tips on the SmPL language.

21

The results from running Coccinelle are either standard patch files in
unified diff, or text files with notes of problematic code lines (generated
by the Python extension). The generated standard patch files are directly
applicable, but contain little information about the actual bug found. The
patches could be augmented with notes about the possible code defect, but
this might not be read, or introduce too much static. The Python generated
files can contain any information (depending on the actual Python code),
but in general only line numbers are written.

While running Coccinelle, the user is not presented with an estimate of
how long the process would take, or a file by file progress. This would help
the user in knowing whether to let the scan run overnight or whether it could
be used almost interactively (for instance in a makefile or similar).

During the installation of Coccinelle on my Debian server I ran into some
problems caused by an incompatible version of Python, which resulted in
many wasted hours and a lot of mail correspondence with the Coccinelle
authors. This could probably have been avoided if more work was spent
on testing Coccinelle on various platforms, as well as different hardware. I
have been told by Julia Lawall from the Coccinelle team that the installation
procedure has been improved in the latest release, but I have not yet been
able to confirm this myself.

9.3 Technical results

Even though OpenSSL has been tested with loads of static analyzers and
programs like Valgrind, Coccinelle has found code defects and programming
style errors, which the others did not (or the OpenSSL team disregarded as
such). This information is from the OpenSSL mailinglist as well as CVS
commit comments, both if which note several of the previously mentioned
analyzers and checkers.

Regarding Coverity’s scanning of OpenSSL,16 Coccinelle has found as
many defects as Coverity Prevent, and the severity appears to be similar.
This indicates that Coccinelle is comparable to a commercial product that has
been developed on for more than ten years, which I think is pretty impressive,
since Coccinelle only has a handful of developers and has been active for just
a few years.

It might be limiting for Coccinelle that it only deals with C code, but
I would assume that it would be possible to create support for more C-like
languages in the future, when more resources are available for this purpose.
Coverity Prevent also started with only C code, and now it has support for

16See Section 10.1 on page 25 for more about Coverity’s Open Source initiative

22

C++, C# and Java as well.

23

10 Related work

There are quite a few projects that deal with static code analysis, but the
following seem to be the most interesting (only tools dealing with the C
programming language are listed). According to [4], Coverity, PolySpace
and K7 are the three market leaders. The study in [4] is from January 2008,
so they are probably still in wide use, if not still in the top.

As most of these tools are commercial and closed-source, I have not been
able to evaluate them first hand. Because of this, I have used the available
documentation and the comparative study [4] as basis for my comparison.

• Coverity Prevent
A commercial tool.

• PolySpace Verifier
A commercial tool, used for testing embedded systems.

• K7 Klocwork
A commercial tool.

• CP-Miner/PR-Miner
Two academic tools, used to find examples of copy/paste code and
incorrect usage of API functions.

10.1 Coverity Prevent

Coverity Prevent from Coverity is a commercial tool. I will refer to Coverity
Prevent as CP in the remainder of this section.

CP started as an academic research project by Dawson Engler and some
of his students at Stanford University in 2002 [5], and has since grown to
a company with more than 150 employees and 600 clients, according to the
Coverity web page [2].

As CP is proprietary and closed source, it is not easy to get information
about the inner workings of the software. I have therefore leaned heavily
on the comparative study [4], the initial Coverity paper [5], and for a lesser
part, the Coverity web site and information material [1]. I have compared the
information on the Coverity web site [2] and the Coverity Prevent product
information[1] with the study [4], and there are so many similarities in their
descriptions of the software, that I feel it is close enough for comparison to
Coccinelle and the other analyzers.

When CP was purely an academic tool, it used a meta language called
Metal, which could be used analogously to SmPL in Coccinelle. As a com-
mercial product, Coverity Prevent has a similar language called Coverity

24

Extend, which was probably rewritten as CP turned commercial. At least
the description of Metal and Extend differ on in syntax, as mentioned by [4].

The analysis from CP is not sound nor complete 17 according to the
comparative study [4], which states that Coverity Prevent does not report
all defects and may have false positives, even though it is stated that Coverity
Prevent has 100% code path coverage in their product information [1].

CP does a lot of work of eliminating infeasible code paths and false posi-
tives, in order to give the user less code to review. This also means that false
negatives are possible, as results are filtered.

CP does not give code patches to eliminate the bugs found, it merely
gives the user information that may be helpful in rewriting the code.

Coverity (as it was initially called) originally started as a tool for analyz-
ing C, but the language coverage has grown since then, as CP now supports
C, C++, Java and C# according to their latest data sheet [1].

In addition to code defect checkers, CP has also a few security related
checkers, like checking for insecure coding techniques, overflows or incorrect
use of temporary files.

In a joint effort with amongst others the U.S. Department of Homeland
Security, Coverity Prevent has been applied to a broad range of Open Source
software, including OpenSSL. With regards to OpenSSL, this initiative led
to the finding and fixing of 24 bugs in about 222K LoC, according to the
Coverity Scan Web site [3]. According to the CVS commit comments, 36
defects have been fixed based on CP reports, but it is not clear which are
from the joint effort. These numbers are however very similar to the 16 to
37 code defects I have found using Coccinelle.

10.2 PolySpace Verifier

PolySpace Verifier (PV) is a sound, flow-sensitive, inter-procedural analyzer
[4].

PV is a commercial tool, and can analyze C, C++ and Ada. PV has a
MISRA 18 standard compliance checker, and is highly specialized for testing
software in embedded systems.

Because PV analyzes all code paths, it is infeasible to use it on very large
programs. According to [4] the upper limit for analysis is approx. 50K LoC.

PolySpace has support for “non-trivial relationships between variables”

17A complete analyzer has no false negatives, i.e. does not filter results, whereas a sound
analyzer has no false positives.

18Motor Industry Software Reliability Association - http://www.misra.org.uk/

25

[4], and is able to reason about variable aliasing 19 and concurrency. While
PV has great support for arithmetic analysis, it lacks support for memory
handling defects, such as overflows and leaks. Since MISRA disallows dy-
namic memory allocation, this is not really a problem. However, if applied
to software projects such as OpenSSL, the code defect detection rate will
probably be quite low compared to e.g. Coverity Prevent because of this
limitation in PV.

The results from PV are in the form of warnings of different colors/de-
grees, ranging from green to red according to the possibility of code defects.
Dead code is marked with gray.

There are no security checkers in PV.

10.3 Klocwork K7

Klocwork K7 supports C, C++ and Java, has support for some aliasing and
has an unsound inter-procedural analysis.

Like Coverity Prevent, K7 has some dedicated security checkers. For
instance, K7 has checkers that find code that is syntactically valid, but that
due to possible misspellings or mistypings could be insecure. This could for
example be an assignment in a condition, which could lead to some hard to
find bugs, or using insecure function calls.

There are also checkers that find use of poor, unsafe encryption algo-
rithms. As this seems to be too complex for a static analyzer, I would assume
that this is based on known API functions, string-based search (e.g. functions
with ”md5” ”rot13” in their names) or some sort of heuristic approach.

K7 has also been applied to some Open Source projects, and it is claimed
that K7 has found some defects that Coverity Prevent did not [4].

Like PV, K7 returns a report with possible code defects, ranked according
to severity.

10.4 CP-Miner/PR-Miner

CP-Miner and PR-Miner are two academic tools, created by Zhenmin Li and
Yuanyuan Zhou et al. at the University of Illinois in 2004 and 2005.

CP-Miner is a tool for detecting copy-pasted code, and bugs related to
copy-paste operations. These bugs could for instance be introduced because
a programmer copies a function from another library, but forgets to modify
an identifier, or when porting code to another platform, neglects to resolve

19Aliasing is when two or more pointers are pointing to the same memory, which can
be very hard to detect properly

26

issues regarding the new platform in the copied code. CP-Miner uses data
mining along with a frequent sub-sequence algorithm to detect copy-pasted
code, according to the CP-Miner report [6]. CP-Miner can not only detect
100% identical text, but also small variations, thanks to the frequent sub-
sequence algorithm.

CP-Miner is limited to very simple types of bugs, as it is impossible to
deduct what the programmer has left out or forgotten to implement, when
code was copied. Nevertheless, it has shown great results, as it has detected
28 copy-paste related bugs in Linux and 23 in FreeBSD according to the
CP-Miner report [6]. Compared to plagiarism tools, which typically has a
complexity of O(n3) when applied to n statements, CP-Miner has a com-
plexity of only O(n2). This is because of the involved algorithm, and the
fact that CP-Miner operates on tokens instead of the entire text, character
by character.

PR-Miner is a similar tool, that also facilitates data mining, in order to
extract programming rules, and subsequently check for compliance of these
rules. As the PR-Miner report [7] writes: “Programs usually follows many
implicit programming rules, most of which are too tedious to be documented
by programmers. When these rules are violated by programmers who are
unaware of or forgot about them, defects can be easily introduced.”. As PR-
Miner automatically can extract these rules, most of the tedious work is done
for the programmer. Furthermore, as rules change over time, PR-Miner can
be executed again on the source code, to extract an updated version of the
rules. If these rules were maintained by hand, there is a good chance that
these changes were forgotten.

PR-Miner uses a data mining technique called frequent itemset mining,
which is comparable to the frequent sub-sequence algorithm used in CP-
Miner, except frequent itemset mining focuses on the frequency of precise
data (e.g. often used code constructs), and frequent sub-sequence focuses on
similarity of data.

PR-Miner has like CP-Miner been applied to the latest version of Linux,
where 16 has been detected and confirmed. This might not seem as much,
but taken into account that PR-Miner is almost fully automatic and fast, it
is highly applicable in finding defects that violates proper coding style.

27

11 Conclusion

Compared to the related software, Coccinelle has found as many defects as
Coverity Prevent, and has many of the same features as the others. For in-
stance, there are some semantic patches for Coccinelle that deal with memory
allocation and pointer dereferencing.

The severity of the detected defects from Coccinelle are about the same
level as the ones found from Coverity Prevent, but I suspect that the OpenSSL
community has a higher degree of trust in Coverity Prevent than in Coc-
cinelle. This is probably also why the submitted patches have not yet been
integrated into OpenSSL.

There are some areas where Coccinelle could use a hand, for instance
regarding the installation, as mentioned in Section 9.3.

Usability-wise, Coccinelle could definitely use some work, as setting it up
could be a non-trivial task, as broken dependencies are not always detected.

28

A Bibliography

References

[1] Coverity, Coverity Prevent Product Information (pdf), Worldwide Web
Document (2009). Available at http://www.coverity.com/library/

pdf/coverity_prevent.pdf ([Online; accessed 5-May-2009].)

[2] Coverity, Coverity Web Site, Worldwide Web Document (2009). Avail-
able at http://www.coverity.com/ ([Online; accessed 2-Jun-2009].)

[3] Coverity, Coverity’s Open Source Scan Ladder, Worldwide Web Docu-
ment (2009). Available at http://www.scan.coverity.com/rungAll.

html ([Online; accessed 5-May-2009].)

[4] P. Emanuelsson and U. Nilsson, A Comparative Study of Industrial
Static Analysis Tools, Technical report, Linköping University (2008).

[5] D. Engler, B. Chelf, A. Chou, and S. Hallem, Checking System Rules
Using System-Specific, Programmer-Written Compiler Extensions, Pro-
ceedings of the 4th Symposium on Operating System Design and Imple-
mentation (OSDI) (2000).

[6] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code., Proceedings of
the Sixth Symposium on Operating System Design and Implementation
(OSDI’04) (2004), 289–302.

[7] Z. Li and Y. Zhou, PR-Miner: Automatically Extracting Implicit Pro-
gramming Rules and Detecting Violations in Large Software Code, 13th
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (FSE’05) (2005).

[8] Misc, Coccinelle: Semantic Patches for Collateral Evolutions, World-
wide Web Document (2009). Available at http://www.emn.fr/x-info/
coccinelle/ ([Online; accessed 19-May-2009].)

[9] Misc, Coccinelle Wiki, Worldwide Web Document (2009). Available at
http://cocci.ekstranet.diku.dk/wiki/doku.php ([Online; accessed
08-Jun-2009].)

[10] Misc, Common Weakness Enumeration List, Worldwide Web Document
(2009). Available at http://cwe.mitre.org/data/index.html ([On-
line; accessed 4-April-2009].)

29

http://www.coverity.com/library/pdf/coverity_prevent.pdf
http://www.coverity.com/library/pdf/coverity_prevent.pdf
http://www.coverity.com/
http://www.scan.coverity.com/rungAll.html
http://www.scan.coverity.com/rungAll.html
http://www.emn.fr/x-info/coccinelle/
http://www.emn.fr/x-info/coccinelle/
http://cocci.ekstranet.diku.dk/wiki/doku.php
http://cwe.mitre.org/data/index.html

[11] Misc, CWE-658: Weaknesses in Software Written in C, Worldwide
Web Document (2009). Available at http://cwe.mitre.org/data/

definitions/658.html ([Online; accessed 4-April-2009].)

[12] Misc, OpenSSL vulnerabilities, Worldwide Web Document (2009).
Available at http://openssl.org/news/vulnerabilities.html ([On-
line; accessed 4-April-2009].)

[13] R. C. Seacord, The CERT C Secure Coding Standard, Addison-Wesley
(2009).

[14] H. Stuart, Hunting bugs with Coccinelle, Masters Thesis, Technical re-
port, DIKU, University of Copenhagen (2008).

30

http://cwe.mitre.org/data/definitions/658.html
http://cwe.mitre.org/data/definitions/658.html
http://openssl.org/news/vulnerabilities.html

B Appendix

The OpenSSL specific patches are in Appendix B.3 on page 44.

B.1 OpenSSL CVE Reports

CVE ID CWE ID
CVE-2009-1386 CWE-476: NULL Pointer Dereference
CVE-2009-0789 CWE-20: Improper Input Validation
CVE-2009-0591 CWE-20: Improper Input Validation
CVE-2009-0590 CWE-20: Improper Input Validation
CVE-2008-5077 CWE-347: Improper Verification of Cryptographic Signature
CVE-2008-1672 CWE-415: Double Free

CWE-476: NULL Pointer Dereference
CVE-2008-0891 CWE-415: Double Free

CWE-476: NULL Pointer Dereference
CVE-2006-4343 CWE-20: Improper Input Validation

CWE-131: Incorrect Calculation of Buffer Size
CVE-2006-4339 CWE-20: Improper Input Validation
CVE-2006-3738 CWE-131: Incorrect Calculation of Buffer Size
CVE-2006-2940 CWE-20: Improper Input Validation
CVE-2006-2937 CWE-20: Improper Input Validation
CVE-2005-2969 CWE-20: Improper Input Validation
CVE-2004-0975 CWE-377: Insecure Temporary File
CVE-2004-0112 CWE-476: NULL Pointer Dereference
CVE-2004-0081 CWE-241: Improper Handling of Unexpected Data Type
CVE-2004-0079 CWE-476: NULL Pointer Dereference
CVE-2003-0851 CWE-20: Improper Input Validation

CWE-241: Improper Handling of Unexpected Data Type
CVE-2003-0545 CWE-20: Improper Input Validation
CVE-2003-0544 CWE-20: Improper Input Validation
CVE-2003-0543 CWE-190: Integer Overflow or Wraparound
CVE-2003-0147 CWE-380: Technology-Specific Time and State Issues
CVE-2003-0131 CWE-20: Improper Input Validation
CVE-2003-0078 CWE-20: Improper Input Validation

CWE-201: Information Leak Through Sent Data
CVE-2002-0659 CWE-20: Improper Input Validation
CVE-2002-0657 CWE-131: Incorrect Calculation of Buffer Size
CVE-2002-0656 CWE-131: Incorrect Calculation of Buffer Size
CVE-2002-0655 CWE-681: Incorrect Conversion between Numeric Types

Figure 9: List of CVE reported vulnerabilities based on the CWE taxonomy

The CWE classification in Figure 9 are based on reports on vupen.com,
and to a certain degree on my own judgement.

31

CWE ID Count
CWE-20: Improper Input Validation 14
CWE-476: NULL Pointer Dereference 5

CWE-131: Incorrect Calculation of Buffer Size 4
CWE-415: Double Free 2

CWE-241: Improper Handling of Unexpected Data Type 2
CWE-347: Improper Verification of Cryptographic Signature 1

CWE-377: Insecure Temporary File 1
CWE-380: Technology-Specific Time and State Issues 1

CWE-681: Incorrect Conversion between Numeric Types 1
CWE-190: Integer Overflow or Wraparound 1

CWE-201: Information Leak Through Sent Data 1

Figure 10: List of CWE IDs based on their appearence in OpenSSL CVE
reports

B.2 Pre-made Patches

All pre-made semantic patches are also available at the Coccinelle web page
at http://www.emn.fr/x-info/coccinelle/rules/

andand.cocci

// The right argument of || or && is dereferencing something known to be

↪→NULL

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/andand.html

// Options:

@ expression@

expression E;

identifier fld;

@@

- !E &&

+ !E ||

<+...E->fld...+>

@ expression@

expression E;

identifier fld;

@@

- E ||

+ E &&

<+...E->fld...+>

32

badzero.cocci

// A pointer should not be compared to NULL

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/badzero.html

// Options:

@ disable is_zero ,isnt_zero @

expression *E;

expression E1 ,f;

@@

E = f(...)

<...

(

- E == 0

+ !E

|

- E != 0

+ E

|

- 0 == E

+ !E

|

- 0 != E

+ E

)

...>

?E = E1

@ disable is_zero ,isnt_zero @

expression *E;

@@

(

E ==

- 0

+ NULL

|

E !=

- 0

+ NULL

|

- 0

+ NULL

== E

|

- 0

+ NULL

!= E

)

continue.cocci

// Continue at the end of a for loop has no purpose

//

// Confidence : Moderate

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/continue.html

33

// Options:

@@

position p;

@@

for (...;...;...) {

...

if (...) {

...

- continue;

}

}

find unsigned.cocci

// A variable that is declared as unsigned should not be tested to be less

↪→than

// zero.

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/ find_unsigned .html

// Options: -all_includes

@u@ type T; unsigned T i; position p; @@

i@p < 0

@script:python@

p << u.p;

i << u.i;

@@

print "* file: %s signed reference to unsigned %s on line %s" %

↪→(p[0].file ,i,p[0]. line)

isnull.cocci

// Dereference of an expression that has been checked to be NULL

//

// Confidence : Moderate

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/isnull.html

// Options:

@r exists@

expression E, E1;

identifier f;

statement S1,S2,S3;

position p;

@@

if (E == NULL)

{

... when != if (E == NULL) S1 else S2

when != E = E1

E@p ->f

... when any

return ...;

34

}

else S3

@script:python@

E << r.E;

p << r.p;

@@

print "* file: %s deref of NULL value %s on line %s" %

↪→(p[0].file ,E,p[0]. line)

malloc.cocci

@r exists@

local idexpression x;

statement S;

expression E;

identifier f,l;

position p1,p2,p3;

expression *ptr != NULL;

@@

(

if ((x@p1 = malloc (...)) == NULL) S

|

x@p1 = malloc (...);

...

if (x == NULL) S

)

<... when != x

when != if (...) { <+...x...+> }

(

goto@p3 l;

|

x->f = E

)

...>

(

return \(0\| <+...x...+ >\| ptr\);

|

return@p2 ...;

)

@script:python@

p1 << r.p1;

p2 << r.p2;

p3 << r.p3;

@@

file = p1[0]. file

line1 = p1[0]. line

colb1 = p1[0]. column

cole1 = p1[0]. column_end

line2 = p2[0]. line

colb2 = p2[0]. column

cole2 = p2[0]. column_end

line3 = p3[0]. line

colb3 = p3[0]. column

cole3 = p3[0]. column_end

print "* TODO [[view:%s::face=ovl -face1 ::linb=%s::colb=%s::cole=%s][ALLOC:

↪→%s::%s]]" % (file ,line1 ,colb1 ,cole1 ,file ,line1)

35

print "[[view:%s::face=ovl -face2::linb=%s::colb=%s::cole=%s][return with no

↪→free: %s]]" % (file ,line2 ,colb2 ,cole2 ,line2)

print "[[view:%s::face=ovl -face3::linb=%s::colb=%s::cole=%s][via goto:

↪→%s]]" % (file ,line3 ,colb3 ,cole3 ,line3)

print "in function %s" % (p1[0]. current_element)

cocci.include_match(False)

@script:python@

p1 << r.p1;

p2 << r.p2;

@@

file = p1[0]. file

line1 = p1[0]. line

colb1 = p1[0]. column

cole1 = p1[0]. column_end

line2 = p2[0]. line

colb2 = p2[0]. column

cole2 = p2[0]. column_end

print "* TODO [[view:%s::face=ovl -face1 ::linb=%s::colb=%s::cole=%s][ALLOC:

↪→%s::%s]]" % (file ,line1 ,colb1 ,cole1 ,file ,line1)

print "[[view:%s::face=ovl -face2::linb=%s::colb=%s::cole=%s][return with no

↪→free: %s]]" % (file ,line2 ,colb2 ,cole2 ,line2)

print "in function %s" % (p1[0]. current_element)

mini null ref.cocci

// find cases where a pointer is dereferenced and then compared to NULL

// this considers a very special case where the dereference is part of a

// declaration

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/ mini_null_ref .html

// Options:

@@

type T;

expression E;

identifier i,fld;

@@

- T i = E->fld;

+ T i;

... when != E

when != i

if (E == NULL) { ... return ...; }

+ i = E->fld;

mini null ref2.cocci

// find cases where a pointer is dereferenced and then compared to NULL

// this considers a very special case where error handling code has been

// constructed incorrectly

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/ mini_null_ref2 .html

// Options:

36

@@

expression E,E1;

identifier f,fld ,fld1;

statement S1,S2;

@@

E->fld = f(...);

... when != E = E1

when != E->fld1 = E1

if (

- E

+ E->fld

== NULL) S1 else S2

mini null ref3.cocci

// find cases where a pointer is dereferenced and then compared to NULL

// this considers a very special case that typically finds dereferences in

// debugging code

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/ mini_null_ref3 .html

// Options:

@disable is_null@

identifier f;

expression E;

identifier fld;

statement S;

@@

+ if (E == NULL) S

f(...,E->fld ,...);

- if (E == NULL) S

@@

identifier f;

expression E;

identifier fld;

statement S;

@@

+ if (!E) S

f(...,E->fld ,...);

- if (!E) S

notand.cocci

// !x&y combines boolean negation with bitwise and

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/notand.html

// Options:

@@ expression E; constant C; @@

(

!E & !C

|

37

- !E & C

+ !(E & C)

)

notnull.cocci

// this detects NULL tests that can only be reached when the value is known

// not to be NULL

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/notnull.html

// Options:

@r exists@

local idexpression x;

expression E;

position p1,p2;

@@

if (x@p1 == NULL || ...) { ... when forall

return ...; }

... when != \(x=E\|x--\|x++\|--x\|++x\|x-=E\|x+=E\|x|=E\|x&=E\)

when != &x

(

x@p2 == NULL

|

x@p2 != NULL

)

// another path to the test that is not through p1?

@s exists@

local idexpression r.x;

position r.p1 ,r.p2;

@@

... when != x@p1

(

x@p2 == NULL

|

x@p2 != NULL

)

// another path to the test from p1?

@t exists@

local idexpression x;

position r.p1 ,r.p2;

@@

if (x@p1 == NULL || ...) { ... x@p2 ... when any

return ...; }

// another path to the test containing an assignment ?

@u exists@

local idexpression x;

expression E;

position r.p1 ,r.p2;

@@

38

if (x@p1 == NULL || ...) { ... when forall

return ...; }

...

\(x=E\|x--\|x++\|--x\|++x\|x-=E\|x+=E\|x|=E\|x&=E\|&x\)

... when != x@p1

when any

(

x@p2 == NULL

|

x@p2 != NULL

)

@fix depends on !s && !t && !u@

position r.p2;

expression x,E;

statement S1,S2;

@@

(

- if ((x@p2 != NULL) || ...)

S1

|

- if ((x@p2 != NULL) || ...)

S1

- else S2

|

- (x@p2 != NULL) && E

+ E

|

- (x@p2 == NULL) || E

+ E

|

- if ((x@p2 == NULL) && ...) S1

|

- if ((x@p2 == NULL) && ...) S1 else

S2

|

- BUG_ON(x@p2 == NULL);

)

@script:python depends on !s && !t && !u && !fix@

p1 << r.p1;

p2 << r.p2;

@@

cocci.print_main(p1)

cocci.print_secs (" retest",p2)

null ref.cocci

// find cases where a pointer is dereferenced and then compared to NULL

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/null_ref.html

// Options:

@match exists@

expression x, E,E1;

identifier fld;

39

position p1,p2;

@@

(

x = E;

... when != \(x = E1\|&x\)

x@p2 == NULL

... when any

|

x = E

... when != \(x = E1\|&x\)

x@p2 == NULL

... when any

|

x != NULL && (<+...x->fld...+>)

|

x == NULL || (<+...x->fld...+>)

|

x != NULL ? (<+...x->fld...+>) : E

|

&x->fld

|

x@p1 ->fld

... when != \(x = E\|&x\)

x@p2 == NULL

... when any

)

@other_match exists@

expression match.x, E1, E2;

position match.p1 ,match.p2;

@@

(

x = E1

|

&x

)

... when != \(x = E2\|&x\)

when != x@p1

x@p2

@other_match1 exists@

expression match.x, E2;

position match.p1 ,match.p2;

@@

... when != \(x = E2\|&x\)

when != x@p1

x@p2

@ script:python depends on !other_match && !other_match1@

p1 << match.p1;

p2 << match.p2;

@@

cocci.print_main(p1)

cocci.print_sec ("NULL test",p2)

open.cocci

40

@r exists@

local idexpression x;

statement S;

expression E;

identifier f,l;

position p1,p2,p3;

expression *ptr != NULL;

@@

(

if ((x@p1 = \(open\|fopen\)(...)) == NULL) S

|

x@p1 = \(open\|fopen \) (...);

...

if (x == NULL) S

)

<... when != x

when != if (...) { <+...x...+> }

(

goto@p3 l;

|

x->f = E

)

...>

(

return \(0\| <+...x...+ >\| ptr\);

|

return@p2 ...;

)

@script:python@

p1 << r.p1;

p2 << r.p2;

p3 << r.p3;

@@

file = p1[0]. file

line1 = p1[0]. line

colb1 = p1[0]. column

cole1 = p1[0]. column_end

line2 = p2[0]. line

colb2 = p2[0]. column

cole2 = p2[0]. column_end

line3 = p3[0]. line

colb3 = p3[0]. column

cole3 = p3[0]. column_end

print "* TODO [[view:%s::face=ovl -face1 ::linb=%s::colb=%s::cole=%s][ALLOC:

↪→%s::%s]]" % (file ,line1 ,colb1 ,cole1 ,file ,line1)

print "[[view:%s::face=ovl -face2::linb=%s::colb=%s::cole=%s][return with no

↪→free: %s]]" % (file ,line2 ,colb2 ,cole2 ,line2)

print "[[view:%s::face=ovl -face3::linb=%s::colb=%s::cole=%s][via goto:

↪→%s]]" % (file ,line3 ,colb3 ,cole3 ,line3)

print "in function %s" % (p1[0]. current_element)

cocci.include_match(False)

@script:python@

p1 << r.p1;

p2 << r.p2;

@@

file = p1[0]. file

line1 = p1[0]. line

41

colb1 = p1[0]. column

cole1 = p1[0]. column_end

line2 = p2[0]. line

colb2 = p2[0]. column

cole2 = p2[0]. column_end

print "* TODO [[view:%s::face=ovl -face1 ::linb=%s::colb=%s::cole=%s][ALLOC:

↪→%s::%s]]" % (file ,line1 ,colb1 ,cole1 ,file ,line1)

print "[[view:%s::face=ovl -face2::linb=%s::colb=%s::cole=%s][return with no

↪→free: %s]]" % (file ,line2 ,colb2 ,cole2 ,line2)

print "in function %s" % (p1[0]. current_element)

sizeof.cocci

// Applying sizeof to the result of sizeof makes no sense

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/sizeof.html

// Options:

@@

expression E;

@@

- sizeof (

sizeof (E)

-)

@@

type T;

@@

- sizeof (

sizeof (T)

-)

unused.cocci

// A variable is only initialized to a constant and is never used otherwise

//

// Confidence : High

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/unused.html

// Options:

@e@

identifier i;

position p;

type T;

@@

extern T i@p;

@@

type T;

identifier i;

constant C;

position p != e.p;

@@

42

- T i@p;

<+... when != i

- i = C;

...+>

43

B.3 Custom Patches

The following semantic patches are generally inspired by or rewritten from
existing patches, to fit the bug types of OpenSSL. Original copyright notes
are kept in each case.

malloc style.cocci

//

// Wrong method call for malloc and free

//

@@

expression E;

@@

- free(E);

+ OPENSSL_free(E);

@@

expression E;

@@

- malloc(E);

+ OPENSSL_malloc(E);

openssl malloc.cocci

// This tests for cases where a pointer is not freed upon returning of the

↪→function , and especially

// before jumping to an err label (since this is so widely used in

↪→OpenSSL). A call to OPENSSL_free () is

// inserted before returning , to prevent leaks.

//

// Modified for OpenSSL by Sune Rievers

@r exists@

local idexpression x;

statement S;

expression E;

identifier f,l;

position p1,p2,p3;

expression *ptr != NULL;

@@

(

if ((x@p1 = OPENSSL_malloc (...)) == NULL) S

|

x@p1 = OPENSSL_malloc (...);

...

if (x == NULL) S

)

<... when != x

when != if (...) { <+...x...+> }

(

goto@p3 l;

...

44

label l;

+ OPENSSL_free(x);

|

x->f = E

)

...>

(

return \(0\| <+...x...+ >\| ptr\);

|

+ OPENSSL_free(x);

return@p2 ...;

)

openssl malloc free.cocci

// An ALLOC is not matched by an FREE before an error return.

//

// Confidence : Moderate

// Copyright: (C) Gilles Muller , Julia Lawall , EMN , DIKU. GPLv2.

// Modified for OpenSSL by Sune Rievers

// URL: http :// www.emn.fr/x-info/ coccinelle /rules/ alloc_free .html

// Options:

@r exists@

local idexpression n;

statement S1,S2;

expression E;

expression *ptr != NULL;

type T;

position p1,p2;

@@

(

if ((n = OPENSSL_malloc@p1 (...)) == NULL) S1

|

n = OPENSSL_malloc@p1 (...)

)

... when != OPENSSL_free ((T)n)

when != if (...) { <+... OPENSSL_free ((T)n) ...+> } else S2

when != true n == NULL || ...

when != n = (T)E

when != E = (T)n

(

return \(0\| <+...n...+ >\| ptr\);

|

+ OPENSSL_free(n);

return@p2 ...;

)

use after free.cocci

// Use after free

//

// Rearranges calls to free () and OPENSSL_free () so that variables are not

↪→freed until

// after their last usage.

//

// http :// cwe.mitre.org/data/ definitions /416. html

//

45

@@

expression E;

expression E2 != NULL;

expression f;

@@

- free(E);

... when != free(E)

(

free(E);

|

E2 = E;

+ free(E);

+ E = NULL;

|

f(<+...E...+ >);

+ free(E);

+ E = NULL;

)

@@

expression E;

expression E2 != NULL;

expression f;

@@

- OPENSSL_free(E);

... when != OPENSSL_free(E)

(

OPENSSL_free(E);

|

E2 = E;

+ OPENSSL_free(E);

+ E = NULL;

|

f(<+...E...+ >);

+ OPENSSL_free(E);

+ E = NULL;

)

46

	Abstract
	Preface
	Acknowledgments
	Introduction
	Background and motivation
	Problem definition
	Scope
	Intended audience

	Analysis of Coccinelle
	General description of Coccinelle
	Static analysis
	Cocci files (scripting)

	Bug classification
	Description of OpenSSL
	Why this software project is interesting
	Particular bugs in project

	Bug hunting
	Using pre-made semantic patches
	Bug type analysis
	Creating new scripts
	Reception from the community
	Dealing with false positives

	Evaluation of Coccinelle
	Usage
	Usability
	Technical results

	Related work
	Coverity Prevent
	PolySpace Verifier
	Klocwork K7
	CP-Miner/PR-Miner

	Conclusion
	Bibliography
	Appendix
	OpenSSL CVE Reports
	Pre-made Patches
	Custom Patches

