
Understanding Collateral Evolution in
Linux Device Drivers

Yoann Padioleau
OBASCO Group

Ecole des Mines de
Nantes-INRIA, LINA

44307 Nantes cedex 3, France

Yoann.Padioleau@emn.fr

Julia L. Lawall
DIKU

University of Copenhagen
2100 Copenhagen Ø,

Denmark

julia@diku.dk

Gilles Muller
OBASCO Group

Ecole des Mines de
Nantes-INRIA, LINA

44307 Nantes cedex 3, France

Gilles.Muller@emn.fr

“Greg Kroah-Hartman has gotten [Linux] 2.6.13 off
to a good start with a massive set of driver core
patches. There are a fair number of API changes
that come with this patch set, so the whole thing
is worth a look. In-tree code has been fixed to use
the new API, but, as always, maintainers of exter-
nal code are on their own.”
http://lwn.net/Articles/140002/, June 23, 2005.

ABSTRACT
In a modern operating system (OS), device drivers can make
up over 70% of the source code. Driver code is also heav-
ily dependent on the rest of the OS, for functions and data
structures defined in the kernel and driver support libraries.
These properties pose a significant problem for OS evolution,
as any changes in the interfaces exported by the kernel and
driver support libraries can trigger a large number of adjust-
ments in dependent drivers. These adjustments, which we
refer to as collateral evolutions, may be complex, entailing
substantial code reorganizations. As to our knowledge there
exist no tools to help in this process, collateral evolution is
thus time consuming and error prone.

In this paper, we present a qualitative and quantitative as-
sessment of collateral evolution in Linux device driver code.
We provide a taxonomy of evolutions and collateral evo-
lutions, and use an automated patch-analysis tool that we
have developed to measure the number of evolutions and col-
lateral evolutions that affect device drivers between Linux
versions 2.2 and 2.6. In particular, we find that from one
version of Linux to the next, collateral evolutions can ac-
count for up to 35% of the lines modified in such code.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; K.6.3
[Management of Computing and Information Sys-
tems]: Software Management; D.2.8 [Software Engineer-
ing]: Metrics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’06,April 18–21, 2006, Leuven, Belgium.
Copyright 2006 ACM 1-59593-322-0/06/0004 ...$5.00.

General Terms
Measurement

Keywords
Linux, device drivers, software evolution

1. INTRODUCTION
One of the biggest problems in operating system (OS) de-

velopment today is keeping device drivers up to date with
evolutions in the rest of the OS. Device driver code can make
up over 70% of a modern OS [3], and is heavily dependent
on the kernel and driver support libraries for functions and
data structures. Accordingly, any changes in the interfaces
of the kernel or driver support libraries are likely to en-
tail modifications in the device-specific code to restore its
correct behavior. We refer to these modifications as collat-
eral evolutions. Collateral evolutions may entail substantial
code reorganizations and affect many code sites, making it
time-consuming and error-prone. The need for collateral
evolutions may thus hinder OS evolution in practice.

We examine the issues raised by collateral evolution in the
context of Linux. Linux is currently undergoing rapid evo-
lution, with even the so-called stable version 2.6 introducing
more and more interface changes [17]. Furthermore, the size
of the Linux driver code has more than doubled in the last
five years. These factors suggest that driver modifications
due to collateral evolutions are increasingly becoming neces-
sary. Indeed, in our experience, a single collateral evolution
may affect hundreds of code sites spread across many differ-
ent files.

The problem of collateral evolution in Linux is further
complicated by the difficulty of communicating precise in-
formation about the required modifications to driver main-
tainers. As Linux is an open source OS, many kinds of
programmers contribute to its development. Indeed, driver
maintainers are often not kernel experts, but instead experts
in a given device or even ordinary users who find that their
hardware is not adequately supported. Because the devel-
opers who update the kernel and driver support libraries
often do not share a common language and expertise with
device maintainers, documentation about complex collateral
evolutions, if any, is often incomplete. As a result, we have
observed that an evolution and dependent collateral evolu-
tions may take several years to complete and may introduce
bugs into previously mature code.

This paper
While substantial attention has been paid to how to design
an OS, there has been little consideration of its subsequent
evolution. In the case of device driver collateral evolution,
the magnitude and complexity of the problem call for in-
creased attention. In this paper, we analyze the collateral
evolutions in Linux to obtain a better understanding of the
range and scope of the problem. This analysis can lead to
increased awareness of the problem by OS developers and
can motivate the design of automated tools to assist in the
collateral evolution process. Overall, we make the following
contributions:

• We identify and name the collateral evolution phe-
nomenon and characterize its presence as part of the
lifecycle of Linux device drivers.

• We clarify the structure of Linux as it relates to col-
lateral evolution, focusing attention on the interfaces
of the kernel and driver support libraries, and provide
a taxonomy of the main evolutions that occur in these
interfaces.

• We identify a variety of collateral evolutions that evo-
lutions in this taxonomy can entail, and present in de-
tail three examples from Linux 2.5 out of the 72 that
we have studied. These examples illustrate both the
complexity of performing collateral evolutions and the
bugs that can be introduced in mature code.

• Based on the identification of interface elements as po-
tential triggers of collateral evolutions, we show that
the likelihood of collateral evolutions is increasing, as
not only the driver code size but also the complexity of
the driver interfaces has doubled in the last five years.

• Using a tool we have developed that analyzes Linux
patch files, we measure the number of changes in the
interfaces of the kernel and driver support libraries
that require collateral evolutions in device-specific code
in versions of Linux from 2.2 to 2.6. We find that the
number of these changes has been steadily increasing,
with the so-called stable Linux 2.6 showing almost as
many changes as its unstable predecessor, Linux 2.5.

• We then give an estimate of the work required for col-
lateral evolution, based on the amount of modification
performed in device-specific code. Using our tool, we
find that up to 35% of the lines modified in Linux
device-specific code from one version to the next are
due to collateral evolutions. This amount of modifica-
tion is particularly significant because collateral evo-
lutions generally serve only to maintain the current
behavior, rather than improve it.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 provides an assessment of
the kinds of changes that occur in interfaces that affect de-
vice drivers and the collateral evolutions that these changes
entail. Section 4 describes some of these collateral evolutions
in detail. Section 5 quantifies various aspects of Linux evo-
lution and collateral evolution. Finally, Section 6 presents
some conclusions and ideas for future work.

2. RELATED WORK
In this paper, we study the effect of evolution in Linux

code from the point of view of the collateral evolutions that
are entailed. The evolution of open-source operating sys-
tems has also been studied from other perspectives. Godfrey
and Tu have studied the changes in the size of Linux code
between 1993 and 2001 [11]. Although we consider a later
time period, our analysis of the increasing size and complex-
ity of Linux driver code is consistent with their results. Li
et al. have studied the amount of copy-pasted code in Linux
versions up to 2004. They find that such code often occurs in
device drivers [16]. Finally, Hassan has developed a tool that
automatically extracts evolution information from version-
ing repositories and has been applied to variants of BSD [12].
This approach, however, only associates code fragments to
the enclosing functions, and thus cannot determine direct re-
lationships between individual old and new code fragments,
as is needed to reliably detect collateral evolutions.

Our analysis of collateral evolutions requires identifying
the interfaces between driver support libraries and device-
specific code. If Linux were structured using components,
as done in OSes such as Think [7], OSKIT [8] and K42 [1], it
would be easier to identify such interfaces and detect their
evolution. Collateral evolution, however, affects not only
the objects mentioned in the interface, but also the context
in which these objects are used, and thus the problem of
collateral evolution remains in component-based OSes.

As a result of our analysis, we classify the driver support
library evolutions and ensuing collateral evolutions that af-
fect device-specific code. More general forms of evolution
have been classified as refactorings, which are a fixed collec-
tion of general-purpose transformations that reorganize the
structure of a program without changing its semantics [10].
Refactorings, however, apply to the whole program, requir-
ing access to both the evolving code and to all usage sites of
affected definitions. In the case of Linux, however, the entire
code base is not available, as many device drivers are devel-
oped outside the Linux source tree. Thus, is it important to
study collateral evolutions as a separate entity.

Previous work has suggested to avoid the need for collat-
eral evolutions by using wrapper functions, as in the case of
OSKit [8], or virtual machines as in the work of LeVasseur
et al. [15], thus leaving the driver code unchanged. In these
approaches, however, driver code does not benefit from im-
provements in the overall software architecture of the OS
that could ease its future maintenance, e.g. to address new
device requirements. The wrapper approach is furthermore
not always sufficient, as some collateral evolutions such as
the updating of calls to usb submit urb described in Sec-
tion 4.1, depend on information that is only apparent in the
driver code. When collateral evolution is actually needed,
the chaos of coding styles induced by the wrapper approach
makes the collateral evolution all the more difficult. Fi-
nally, we have observed the introduction and subsequent
removal of wrapper functions in Linux code, suggesting that
the Linux development community does not see them as a
viable solution.

Recent years have seen a surge of interest in the automatic
analysis of operating system source code, in order to detect
bugs [2, 5, 6, 9, 16]. These approaches rely on a collec-
tion of required kernel API usage patterns and detect code
fragments that are inconsistent with these patterns. Nev-
ertheless, an incorrectly done or overlooked collateral evo-

lution may satisfy expected patterns without actually cor-
rectly restoring the behavior of the device driver. Detection
of the error would require combining information about the
original implementation of the driver with analysis of the
new version. Other work related to improving the safety
of drivers includes Nooks, which provides a framework for
protecting operating systems and applications from driver
failures [22, 23].

3. THE COLLATERAL EVOLUTION PROB-
LEM

Collateral evolution is required when evolutions in the ker-
nel and driver support libraries induce changes in the inter-
face with device-specific code. To characterize the collateral
evolution problem, we first examine the structure of Linux
support for devices and identify the kinds of changes that
can occur in its interfaces. We then consider the range of
collateral evolutions that these changes can entail.

In the following, we avoid the term “device driver,” which
can be interpreted either as including only the code that in-
teracts directly with the device or as additionally including
the relevant support libraries. Instead, we refer to the for-
mer as device-specific code and the latter as driver support
libraries. Furthermore, we consider the kernel to be a driver
support library except where specified otherwise.

3.1 Linux support for devices
Linux support for devices is provided by a combination

of generic services that are provided by the kernel, services
generic to a device family that are provided by the driver
support libraries, and services specific to a device that are
provided by the device-specific code. As illustrated in Fig-
ure 1, these services are organized hierarchically, with all
services depending on the kernel, specialized driver support
libraries such as USB-serial depending on generic ones such
as USB, and device-specific files such as rtl8150.c depend-
ing on one or more driver support libraries. Typically, these
hierarchical relationships are reflected in the Linux direc-
tory structure. Nevertheless, as some directory hierarchies
represent the bus a device is on, e.g. USB, and others rep-
resent the functionality of a device, e.g., net, cross-directory
references are possible. Such references are illustrated in
Figure 1 by e.g., kaweth.c and rtl8150.c, which are on the
USB bus and are network devices.

The various driver support libraries (including the kernel)
communicate with the device-specific code via interfaces.
As Linux interfaces (i.e., header files) do not distinguish
what is shared between the driver support libraries and the
device-specific code from what is shared within the driver
support libraries, we infer these interfaces from the exter-
nal references made by the device-specific code. The main
points of interaction between the driver support libraries
and the device-specific code are functions and data struc-
tures. Functions include both generic functions exported by
the driver support libraries and callback functions provided
by the device-specific code. Data structures include struc-
tures instantiated by the device-specific code and then used
by the driver support library to maintain the state of each
relevant device. These structures are typically exchanged by
the device-specific code and the driver support libraries on
the invocation of interface functions. Finally, the interface of
a driver support library includes a protocol for using the ex-

usb/
net

usb/media/dsbr100.c
usb/media/se401.c
...

media/radio/saa5249.c
media/video/zr36067.c
...

media/video/msp3400.c
...

media/video/adv7175.c

kernel media

usb/serial

usb/media
usb

net

i2c

usb/serial/belkin_sa.c
usb/serial/cyberjack.c
...

usb/net/kaweth.c

...
usb/net/rtl8150.c

Figure 1: Hierarchical organization of services and
associated dependencies

ported functions and data types. This protocol can specify
features such as function-call sequencing and error-handling
requirements.

Figure 2 shows extracts of the rtl8150 device-specific code,
which has a typical structure. This code depends on the
USB and network device support libraries. The initializa-
tion function, usb rtl8150 init (lines 46-49), registers the
device with the USB support library, providing it with a
structure, rtl8150 driver (lines 1-5), that contains a num-
ber of callback functions required by this support library.
One of these functions is rtl8150 probe (lines 31-44), which
when invoked by the USB library registers the device with
the network device support library in a similar manner. Fig-
ure 2 also shows the function rtl8150 start xmit (lines 7-
29), which is one of the callback functions provided to the
network device support library. This function illustrates the
use of a variety of functions exported by both libraries, the
exchange of data structures, and the instantiation of proto-
cols, e.g., data initialization and usage (lines 16-19). The
relevant extracts of the USB and network device interfaces
are shown in Figure 3.

3.2 Taxonomy of interface changes and collat-
eral evolutions that affect device-specific
code

When an evolution in a driver support library affects its
interface, collateral evolutions must be made in all depen-
dent device-specific files. For example, when a library func-
tion f gains a new argument, device-specific code that uses
f must be modified to construct an appropriate argument
value. In this section, we first provide a taxonomy of changes
that are possible in driver support library interfaces and
then consider the range of collateral evolutions that these
changes can entail.

3.2.1 Interface changes
As motivated in Section 3.1, the interface of a driver sup-

port library includes exported functions, imported device-
specific callback functions, data structures, and protocols.
Evolutions in the driver support library can have arbitrary
effects on one or more of these elements. Figure 4 provides

static struct usb driver rtl8150 driver = { 1

. . . 2

.probe = rtl8150 probe, 3

. . . 4

}; 5

6

static int rtl8150 start xmit(struct sk buff *skb, 7

struct net device *netdev) { 8

rtl8150 t *dev = netdev priv(netdev); 9

int count, res; 10

11

netif stop queue(netdev); 12

count = (skb−>len < 60) ? 60 : skb−>len; 13

count = (count & 0x3f) ? count : count + 1; 14

dev−>tx skb = skb; 15

usb fill bulk urb(dev−>tx urb, dev−>udev, 16

usb sndbulkpipe(dev−>udev, 2), 17

skb−>data, count, write bulk callback, dev); 18

if ((res=usb submit urb(dev−>tx urb,GFP ATOMIC))){ 19

warn("failed tx˙urb %d“n", res); 20

dev−>stats.tx errors++; 21

netif start queue(netdev); 22

} else { 23

dev−>stats.tx packets++; 24

dev−>stats.tx bytes += skb−>len; 25

netdev−>trans start = jiffies; 26

} 27

return 0; 28

} 29

. . . 30

static int rtl8150 probe(struct usb interface *intf, 31

const struct usb device id *id) { 32

struct usb device *udev = interface to usbdev(intf); 33

rtl8150 t *dev; 34

struct net device *netdev; 35

36

netdev = alloc etherdev(sizeof (rtl8150 t)); 37

if (!netdev) { . . . } 38

. . . 39

netdev−>hard start xmit = rtl8150 start xmit; 40

. . . 41

if (register netdev(netdev) != 0) { . . . } 42

. . . 43

} 44

. . . 45

static int init usb rtl8150 init(void) { 46

info(DRIVER DESC " " DRIVER VERSION); 47

return usb register(&rtl8150 driver); 48

} 49

50

static void exit usb rtl8150 exit(void) { 51

usb deregister(&rtl8150 driver); 52

} 53

54

module init(usb rtl8150 init); 55

module exit(usb rtl8150 exit); 56

Figure 2: Extracts of the rtl8150.c in Linux 2.6.13

USB interface
Exported library usb fill bulk urb,
functions usb sndbulkpipe,

usb submit urb, interface to usbdev
usb register, usb deregister

Imported device- rtl8150 probe
specific callback
functions
Data structures rtl8150 driver of type

struct usb driver,
dev->udev of type struct usb device

Protocol usb fill bulk urb if used precedes
usb submit urb

Network device interface
Exported library netif stop queue,
functions netif start queue, alloc etherdev

register netdev

Imported device- rtl8150 start xmit
specific callback
functions
Data structures netdev of type struct net device

Protocol netif start queue follows
netif stop queue on error.

Figure 3: Extracts of the USB and network device
interfaces

Exported library – add/drop arguments
functions – change function name

– change return type
Imported device- – add/drop required parameters
specific callback – change required return type
functions
Data structures – split or merge structures

– introduce layers of indirection
– convert a structure field reference

to a getter/setter function call
Protocols – add or drop required calls

– change sequencing
– change locking requirements
– add required error checking

Figure 4: Changes that can occur in a driver support
library interface

a taxonomy of these effects, obtained by considering sys-
tematically the information included in each case and the
changes that can occur in this information. In a study of
Linux 2.5, described below, we have observed all of these
changes in driver support library interfaces. We thus expect
this taxonomy to apply to other Linux versions as well.

3.2.2 Collateral evolutions
A collateral evolution represents a side effect on the con-

text in which an interface element is used. While interface
elements themselves are intrinsically restricted and fixed,
their usage context consists of arbitrary code, and can vary
widely from one device-specific file to another. It is thus
not possible to develop an exhaustive taxonomy of all pos-
sible collateral evolutions. Instead, we have made a careful
study of 72 collateral evolutions in the various subversions
of Linux 2.5, based on several hundred potential collateral
evolutions that we have identified. The studied collateral
evolutions affect over one thousand files. We furthermore
believe that these examples are representative of the range
and scope of collateral evolution in Linux because Linux 2.5
is an unstable version, in which many evolutions and col-

lateral evolutions occur, and because they cover all of the
identified interface changes.

In the rest of this section, we provide an overview of the
kinds of collateral evolutions that we have identified in our
study. Representative examples among the 72 collateral evo-
lutions that we have studied are shown in Figure 5. The line
numbers in the text below refer to the lines in this figure.

Library functions.We first consider the collateral evolu-
tions required in response to changes in the signature of a
library function, including its arguments, name, and return
type.

Adding an argument to a library function or changing
the type of an existing argument requires that the device-
specific code construct a new value. In simple cases, the new
value is a constant (line 1), a variable already bound in the
current function (line 3), or a fixed transformation of the
current argument, such as adding a structure field reference
(line 4). In many cases, however, the addition of a new
argument or change in an argument type requires substantial
code rewriting, possibly depending on control and data flow
information or external knowledge. For example, when the
type of the argument changes to a new structure type it is
necessary to create and initialize a new structure value as
well as modifying the function call (line 6).

Dropping an argument is generally straightforward, since
the argument has no impact on the context (line 8). It
may, however, be desirable to remove any code involved in
computing the argument’s value.

Changing the name of a library function is straightforward
if the change is performed uniformly. It is more difficult,
however, if the choice of the new function depends on the
context. This is best illustrated by the case of bus to virt

and related functions (line 14). In Linux 2.5.4, these func-
tions were replaced by a functions having names beginning
with “isa ,” apparently to force programmers to consider
whether the functionality of bus to virt was appropriate
for the given context [18]. The treatment of calls to this
the function was, however, not performed uniformly across
the driver source code, leading to a flood of complaints in
the Linux mailing lists [14, 24, 25]. As a result, in Linux
2.5.8, wrapper functions were introduced defining bus to -

virt etc. to their “isa ” counterparts, thus nullifying the
benefit of the evolution.

Function names also change when a collection of functions
defined by the device-specific code is unified into a single li-
brary function (line 15). The collateral evolution requires
both recognizing and eliminating the device-specific defini-
tions, which may exhibit inessential syntactic variations, as
well as updating the call sites.

Changes in function return types often derive from changes
in error handling. When the return type of a library func-
tion changes from void to a type such as int that indicates
an error condition, device-specific code has to be modified
to introduce appropriate error handling (line 16). Often the
device-specific code responds to the error by itself returning
prematurely with an error code. In this case, the collateral
evolution must take care to release any locally allocated re-
sources (line 16). In other cases, it is the semantics, not the
type of the return value that changes. Some library func-
tions use 0 or 1 to indicate an error and 1 or 0 to indicate
success, while others use more informative error codes, such
as -EIO and -ENODEV. When a library function adopts the

more informative error reporting strategy, collateral evolu-
tion may be required at the call sites to invert the sense
of 0 and to introduce specialized error handling depending
on the kind of error that is indicated by the return value.
Similar issues occur when a library-specific return type is
introduced.

Device-specific callback functions.We next consider the
collateral evolutions required when changes in the interface
exported by a driver support library entail modifications to
the signature of an imported device-specific callback func-
tion.

In some cases, a parameter is added to a device-specific
callback function to accommodate some new instance of the
function that needs some additional information (line 17).
In such cases, no further collateral evolution is required. On
the other hand, a new parameter may supersede information
previously computed by the function (line 18). In that case,
careful analysis is needed to eliminate only the computation
of this value. Finally, a new parameter can be added because
the function will directly or indirectly call a library function
that takes this information as a new argument (line 19). In
this case, the new parameter has to be transmitted to all
intervening function calls.

Dropping a parameter or changing its type means that
the original value must be reconstructed if it is needed by
the function (line 20). This can require pervasive changes
in the function definition.

Collateral evolutions related to function return types again
typically concern error return values. When a device-specific
callback function that returns 0 or 1 is required to use more
informative values, the collateral evolution entails identify-
ing the existing values that indicate error or success, and
choosing an appropriate value in each error case (line 22).

Data structures.Evolutions in data structures typically
involve adding, removing, or reorganizing fields, which trig-
ger collateral evolutions similar to the changes in arguments
and parameters described above. The collateral evolution
may, however, be complicated by the use of local variables
to name substructures, requiring a careful dataflow analysis
to identify the affected code (line 24). In some cases, the
reorganization of a structure is accompanied by the intro-
duction of getter and setter functions, abstracting over the
new access path (line 25). In the case of read accesses to
the affected field, the collateral evolution may introduce a
local variable to store the result of calling the getter func-
tion, rather than replacing every read access by a function
call.

Protocols. A driver support library protocol specifies the
order in which various operations related to the functions
and data structures exported by the library should be car-
ried out. Such a protocol may for example specify a re-
quired sequence of function calls or a context in which er-
ror checking is needed. The instantiation of a protocol
in device-specific code is often determined by the device-
specific code structure. For example, when a protocol re-
quires error checking, the actual code used to clean up in
the case of an error may depend on the set of resources al-
located by the device-specific code.

Protocol changes involve removing the instantiation of the
old protocol from the device-specific code and inserting the

Library function definitions
Add argument/change argument type

Version Function New value
1 2.5.53 pnp activate dev NULL
2 2.5.22 end request CURRENT
3 2.5.67 LOCK TEST WITH RETURN parameter of the enclosing function
4 2.5.16 usb stor clear halt field of existing argument
5 2.5.54 dev get(set) drvdata subexpression of existing argument
6 2.5.59 agp (un)register driver newly created and initialized global structure
7 2.5.4 usb submit urb context-dependent constant

Drop argument
Version Function Context effect

8 2.5.63 pnp activate dev none
9 2.5.70 acpi hw low level read(write) none

Change function name
Version Renamed function Function selection strategy

10 2.5.69 mem map (un)reserve uniform
11 2.5.69 cs4x mem map (un)reserve uniform
12 2.5.33,45 FILL CONTROL URB, etc. uniform
13 2.5.16 usb clear halt uniform within a given directory
14 2.5.4 bus to virt, virt to bus, context-dependent, does not follow directory structure

and page to bus
15 2.5.50 sched event function moved from device-specific code to driver support library

Change return type
Version Function Effect

16 2.5.20 acpi hw register read, etc. add/adjust error checking using the acpi status type

Driver function definitions
Add parameter

Version Function Impact
17 2.5.51 USB callback functions none
18 2.5.71 SCSI proc info functions existing computation of the same value deleted, can involve loop slicing
19 2.5.3 Video device mmap function new parameter passed to library function remap page range

Drop parameter/change parameter type
Version Function Effect

20 2.5.71 SCSI proc info functions reconstruct value from new argument (see above)
21 2.5.8 Video driver ioctl functions references to a structure pointer type become references to a local structure

Change return type
Version Function Effect

22 2.5.71 attach/probe. function moves from the attach field of a Scsi Device Template structure to the
probe field of a scsi driver structure; return 1 becomes return -ENODEV

Data structures
Version Structure type Evolution

23 2.5.45 IsdnCardState, BCState change field name
24 2.5.27 mddev t inline substructure
25 2.5.67 i2c client substructure introduced, getter/setter functions introduced

Protocols
26 2.5.52 acpi device dir insert assignment after call to remove proc entry in some contexts
27 2.5.50 irq func callback function drop parameter test, insert locking around function body
28 2.5.36 usb stor clear halt introduce error checking
29 2.5.4 network ioctl functions new ethtool cases, depending on whether the code defines a debug variable
30 2.5.45 USB callback functions interrupt urbs must now be explicitly resubmitted
31 2.5.33 conversion from i2c-old to i2c many changes, including new functions to define,

new structures to define and initialize, and new library functions to use

Figure 5: Some collateral evolutions in Linux 2.5

appropriate instantiation of the new one. In some cases, the
code to add or remove is fixed, and appears in a fixed con-
text (line 26). In other cases, the instantiation of a protocol
is context sensitive. For example, when locking is added,
it must often be placed at every function return point; the
positioning of function returns varies from function to func-
tion (line 27). When error checking is added, it may only be
needed in code that does not already lead to an error return
value (line 28). The set of new cases to be handled by an
ioctl function may depend on the other features provided by
the device-specific code (line 29). Finally, major reorgani-
zations in an interface often involve a combination of these

collateral evolutions (line 31).

3.2.3 Assessment
In some cases, the C compiler can help with collateral evo-

lution, for example by detecting when a function is passed
the wrong number of arguments. Nevertheless, the compiler
only helps in cases where the need for the collateral evolu-
tion manifests itself as a type error; when 0/1 return values
are converted to integer-typed error codes or the required
sequencing of a set of function calls changes, the compiler
provides no assistance.

The simplest collateral evolutions, such as renaming a

function or adding a constant first argument, can be easily
implemented using editor macros or shell scripts. There is
indeed evidence that collateral evolution is done this way, as
sometimes comments that coincidentally contain the name
of an affected function are changed as well. Nevertheless,
even in simple cases this approach is highly error prone, as
it may modify code fragments that contain the same text
but are unrelated to the collateral evolution. More complex
collateral evolutions require parsing complex terms, analyz-
ing the context, transforming multiple lines of code, and
translating variable names and code patterns to those used
in the affected file. The minor variations, omissions, and
errors that we have observed in the updated code suggest
that collateral evolution is often done by hand, which is
time-consuming and error-prone.

4. CASE STUDIES
In this section, we consider three collateral evolutions in

detail. These examples illustrate some of the more complex
cases in three common categories: an argument added to a
library function, a change in the required parameter type of
a callback function, and a change in a protocol. We consider
not only the modifications that the maintainer of device-
specific code must make for each collateral evolution, but
also the history of the collateral evolution, including a study
of the bugs that were introduced.

4.1 Addition of an argument
The USB library function usb submit urb implements the

passing of a message, implemented as USB Request Block
(urb). This function uses the kernel memory-allocation func-
tion, kmalloc, which must be passed a flag indicating the
circumstances in which blocking is allowed. Up through
Linux 2.5.3, the flag was chosen in the implementation of
usb submit urb as follows:

in_interrupt () ? GFP_ATOMIC : GFP_KERNEL

Comments in the file usb/hcd.c, however, indicate that this
solution is unsatisfactory:

// FIXME paging/swapping requests over USB should not
// use GFP_KERNEL and might even need to use GFP_NOIO ...
// that flag actually needs to be passed from the higher level.

Starting in Linux 2.5.4, usb submit urb takes one of the fol-
lowing as an extra argument: GFP KERNEL (no constraints),
GFP ATOMIC (blocking not allowed), or GFP NOIO (blocking
allowed but not I/O). The programmer of device-specific
code selects one of these constants according to the context
of the call to usb submit urb.

Choosing the extra argument of usb submit urb requires
a careful analysis of the surrounding code as well as an un-
derstanding of how this code is used by driver support li-
braries. Comments describing the relevant conditions are
provided with the definition of usb submit urb starting in
Linux 2.5.4. These comments state that GFP ATOMIC is re-
quired in a completion handler, in code related to handling
an interrupt, when a lock is held (including the lock taken
when turning off interrupts), when the state of the run-
ning process indicates that the process may block, in cer-
tain kinds of network driver functions, and in SCSI driver
queuecommand functions. Many of these situations, how-
ever, are not explicitly indicated by the code surrounding

2.5.5 2.5.7 2.5.9 2.5.21 2.5.45 2.5.53 2.5.58
0

10

20

30

40

50

co
rr

ec
te

d
ca

lls
 t

o
us

b_
su

bm
it

_u
rb

local reasons (e.g., locks held)

containing function stored in a
structure or passed to a function

interprocedural effects

Figure 6: Linux 2.5 versions in which GFP KERNEL is
corrected to GFP ATOMIC in a call to usb submit urb

the call to usb submit urb. Instead, they require an under-
standing of the contexts in which the function containing
the call to usb submit urb may be applied. In practice, this
function can be passed to a driver support library via a data
structure or function call and used in arbitrary ways, or can
be invoked directly or indirectly by a local function that has
one of the above properties.

The difficulty in understanding the conditions in which
GFP ATOMIC is required and identifying these conditions in
driver code is illustrated by the many calls to usb submit -

urb that were initially transformed incorrectly. Figure 6
lists the versions in Linux 2.5 in which corrections in the
use of usb submit urb occur and the reason for each correc-
tion. In each case, the error was introduced in Linux 2.5.4
or when the driver entered the kernel source tree, whichever
came later. A major source of errors is the case where the
function containing the call to usb submit urb is stored in
a structure or passed to a function, as these cases require
extra knowledge about how the structure is used or how the
function uses its arguments. Indeed, in the serial subdi-
rectory, all of the calls requiring GFP ATOMIC fit this pattern
and all were initially modified incorrectly (and corrected in
Linux 2.5.7). Surprisingly, in 17 out of the 71 errors, the
reason for using GFP ATOMIC is locally apparent, reflecting
either carelessness or insufficient understanding of the con-
ditions in which GFP ATOMIC is required. Indeed, in Linux
2.6.13, in the file usb/class/audio.c, GFP KERNEL is still
used in one function where a lock is held.

The difficulty of choosing the value of the extra argument
for usb submit urb is illustrated by the case of the function
rtl8150 start xmit shown in Figure 2. The rtl8150 driver
was introduced into the Linux source tree in Linux 2.5.8, at
which point the call to usb submit urb in this function was
given the argument GFP KERNEL. This choice of argument
is, however, incorrect, as rtl8150 start xmit is one of the
kinds of network driver functions that requires GFP ATOMIC.
The code was corrected in Linux 2.5.9.

4.2 Change in the type of a parameter
A Linux ioctl function allows user-level interaction with a

device driver. Copying arguments to and from user space is
a tedious but essential part of the implementation of such

a function. In Linux 2.5.7, the media support library in-
troduced a wrapper function to encapsulate this argument
copying. This function was refined in Linux 2.5.8 and named
video usercopy. As of Linux 2.6.13, video usercopy was
used in 31 media files and 6 usb files.

Introducing the use of video usercopy affects the type
of one of the parameters of the ioctl code. In the original
version, this parameter is a pointer to user space, and each
ioctl command must use the functions copy from user and
copy to user to access or update its value. In these cases,
the data is typically copied once, and otherwise accessed
via a local data structure whose type is specific to the ioctl
command. After the introduction of video usercopy, the
parameter of the ioctl function becomes a generic pointer to
kernel space, which the ioctl code can read from or write to
directly. The collateral evolution thus entails modifying the
treatment of each ioctl command to remove the copy func-
tions, casting the generic pointer parameter to a pointer of
the structure type used by the command, and replacing the
references to the local structure by pointer dereferences. The
latter transformation can be quite invasive. For example, in
the ioctl function of media/radio/radio-typhoon.c, 61% of
the lines of code changes between Linux 2.5.6 and 2.5.8.

The behavior of video usercopy is not specific to me-
dia drivers, and thus there has been interest in making the
function more generally available [13]. Some evidence of
the difficulties this may cause are provided by the case of
i2c/other/tea575x-tuner.c in which video usercopy was
introduced in Linux 2.6.3. In this file, the calls to copy -

from user and copy to user were not removed. The bug
was never fixed. Instead, the use of video usercopy was
removed from this file in Linux 2.6.8.

4.3 Change in a function protocol
The function check region is used in the initialization

of device drivers, in determining whether a given device is
installed. In early versions of Linux, the kernel initializes
device drivers sequentially [20]. In this case, a driver deter-
mines whether its device is attached to a given port using
the following protocol: (i) call check region to find out
whether the memory region associated with the port is al-
ready allocated to another driver, (ii) if not, then perform
some driver-specific tests to identify the device attached to
the port, and (iii) if the desired device is found, then call re-
quest region to reserve the memory region for the current
driver. In more recent versions of Linux, the kernel initial-
izes device drivers concurrently [4]. In this case, between the
call to check region and the call to request region some
other driver may claim the same memory region and initial-
ize the device. To solve this problem, starting with Linux
2.4.2, device-specific code began to be rewritten to replace
the call to check region in step (i) with a call to request -

region, to actually reserve the memory region. Given this
change, if in step (ii) the expected device is not found, then
release region must be used to release the memory region.

Eliminating a call to check region requires replacing it
by the associated call to request region and inserting calls
to release region along error paths. In the first step, it
is necessary to find the call to request region that is as-
sociated with the given call to check region. In practice,
these are often not in the same function, requiring an inter-
procedural analysis. In the second step, it is necessary to
identify code points at which it is known that the expected

2.4
0-5

5-10
10-15

15-20
20-25

25-28

2.5
0-5

5-10
10-15

15-20
20-25

25-30
30-35

35-40
40-45

45-50
50-55

55-60
60-65

65-70
70-75

2.6

75-5
5-9

0

10

20

30

40

ch
an

ge
s

version

Figure 7: check region elimination in Linux 2.4-2.6

device has not been found and thus release region is re-
quired. This condition is often indicated by the returning of
an error value, but may also be indicated by going around
a loop that checks successive ports until finding one with
the desired device. At such code points, it may be the case
that only a subset of the incoming paths contain a call to
check region. In these cases, the call to release region

must be placed under a conditional.
The elimination of check region has been a recurring

topic in Linux mailing lists, including the following exchange:

Subject: Re: Linux-2.6.13 : check region is deprecated
Newsgroups: gmane.linux.kernel
Date: 2005-08-29 23:21:30 GMT

On Tue, 30 Aug 2005, S.W. wrote:

> Hi,
>
> By compiling my kernel, I can see that the
> check region function (in kernel/resource.c)
> is deprecated.
>...
> Is there a function to replace this deprecated
> function ?

Just restructure the code to use request region().

The response in this case does not convey any of the com-
plexity of the collateral evolution process, and highlights
the need for a formal language for specifying collateral evo-
lutions. Indeed, both steps in eliminating check region are
difficult and time-consuming. This difficulty has lead to the
slow pace of the evolution, as shown in Figure 7. Although
beginning in Linux 2.4.2, released in February 2001, the evo-
lution is still not complete as of Linux 2.6.13.3, released in
October 2005.

5. QUANTITATIVE ASSESSMENT
In this section, we present a quantitative assessment of

factors related to collateral evolution in Linux. We be-
gin by assessing the complexity of the interdependencies of
driver code based on the relationship between interfaces and
device-specific files. We then consider the effect of evolution
in the kernel and driver support libraries on interfaces. Fi-
nally, we quantify the required collateral evolutions.

5.1 Code base
Our assessment is based on Linux code from version 2.2.0,

released in January 1999, to version 2.6.13, released in Au-
gust 2005. This sample contains both stable versions (2.2,
2.4, and 2.6) and unstable ones (2.3 and 2.5). All files were
obtained from http://www.kernel.org. Since 2.6.11, Linux
has been released in a series of subminor versions (2.6.11.1,
2.6.11.2, etc.), which we do not consider separately. We fo-
cus on the drivers and sound directories. The sound direc-
tory is included because it was part of the drivers directory
until Linux 2.5.5.

Our study distinguishes between driver support libraries
and device-specific code. As there is no convention in Linux
for identifying driver support libraries, we use the follow-
ing heuristic. We consider that there is at most one driver
support library per directory. A file is in the driver support
library if it exports functions to multiple files or if it exports
functions to another file in the driver support library. Other
files are considered to be device-specific. We ignore both li-
braries that only export functions to other libraries and files
that do not import any library functions, as these are not af-
fected by the interface between driver support libraries and
device-specific code that is the source of collateral evolution.

We have applied the algorithm for distinguishing between
driver support libraries and device-specific code to the files
in the drivers, sound, and net directories. The net di-
rectory in included as a source of driver support libraries
because network device drivers typically use its code. The
kernel is considered to be another driver support library,
defining all of the functions for which definitions are not
found in the drivers, sound, or net code. In Linux 2.4.0
there are 66 driver support libraries and 874 device-specific
files, while in the most recent version of Linux, 2.6.13, these
numbers have more than doubled to 164 and 1926, respec-
tively.

5.2 Methodology
A key point in our quantitative assessment is to under-

stand the changes in device-specific code from one version
of Linux to the next. For this purpose, we have developed
a tool, the patch analyzer, that detects commonalities and
differences in two versions of C code. The patch analyzer
starts from a patch file, in which it analyzes each of the
identified difference regions. We illustrate the analysis us-
ing the difference region shown in Figure 8 that is derived
from a patch file comparing the definition of the function
rtl8160 start xmit in Linux 2.4 (Linux 2.4.19) to the most
recent version in Linux 2.6.13. The complete Linux 2.6.13
definition of rtl8160 start xmit was shown in Figure 2.

The first step of the patch analyzer is to align the common
parts of the two fragments and to identify the maximally
different regions. In our example, the maximally different
regions are as follows:

memcpy(dev->tx_buff, skb->data, skb->len)
replaced by
dev->tx_skb = skb

FILL_BULK_URB(ARG0,ARG2,ARG4,dev->tx_buff,
RTL8150_MAX_MTU,ARG8,ARG10)

replaced by
usb_fill_bulk_urb(ARG0,ARG2,ARG4,skb->data,

count,ARG8,ARG10)

dev->tx_urb->transfer_buffer_length = count
dropped

if((res = usb_submit_urb(ARG0)))
replaced by

count = (skb−>len < 60) ? 60 : skb−>len;
count = (count & 0x3f) ? count : count + 1;

− memcpy(dev−>tx buff, skb−>data, skb−>len);
− FILL BULK URB(dev−>tx urb, dev−>udev,
− usb sndbulkpipe(dev−>udev,2),
− dev−>tx buff, RTL8150 MAX MTU,
− write bulk callback, dev);
− dev−>tx urb−>transfer buffer length = count;
− if ((res=usb submit urb(dev−>tx urb))){
+ dev−>tx skb = skb;
+ usb fill bulk urb(dev−>tx urb, dev−>udev,
+ usb sndbulkpipe(dev−>udev, 2),
+ skb−>data, count, write bulk callback, dev);
+ if ((res=usb submit urb(dev−>tx urb, GFP ATOMIC))){

warn("failed tx˙urb %d“n", res);
dev−>stats.tx errors++;
netif start queue(netdev);

Figure 8: Extracts of a patch derived from the
rtl8150 driver

if((res = usb_submit_urb(ARG0, GFP_ATOMIC)))

In this result, the various statements of the dropped and
added regions are matched up line by line except for the
assignment of the transfer buffer length field. This as-
signment is considered by itself because the next element in
both fragments is a conditional test, and these are aligned
instead. When a function call is matched with another func-
tion call, the common arguments are replaced by a term
ARGn, where n is determined by the argument position. As
the common arguments are not possible evolutions, this nor-
malization improves the chance that this pair of calls will
match with other calls to the same functions. As a further
abstraction, for function names, we drop substrings that cor-
respond to the name of the analyzed file, e.g., rtl8150 in
rtl8150 probe (see Figure 2), as such substrings are often
used to make function names unique across the Linux source
tree. Finally, we observe that the calls to usb submit urb

have a non-trivial common context, including an assignment
and a conditional test. This occurs because conditionals, as-
signments and function calls that have a top-level difference
among their subterms are considered to be different as well.

The next step is to distinguish between differences that are
specific to a single device-specific file and differences that are
recurrent across multiple device-specific files found in one or
more Linux versions, and thus represent a collateral evolu-
tion. For this, we use a threshold: a difference is considered
to be part of a collateral evolution if it occurs at least 5 times
and these occurrences are distributed across at least 3 files.
It may, however, be the case that a complete maximally
different region does not occur often enough to satisfy the
threshold, but there is some subterm that represents the col-
lateral evolution. An example is the case of the conditional
test identified in the case of rtl8160 start xmit:

if((res = usb_submit_urb(ARG0)))
replaced by
if((res = usb_submit_urb(ARG0, GFP_ATOMIC)))

Here, the maximal difference contains the conditional and
the assignment, but, as described in Section 4.1, the collat-
eral evolution is only the addition of the second argument
to the call to usb submit urb.

if((res = usb submit urb(ARG0))) →
if((res = usb submit urb(ARG0, GFP ATOMIC)))

1

vvmmmmmmm 2

((QQQQQQQ

if((EXP0 = usb submit urb(ARG0))) →
if((EXP0 = usb submit urb(ARG0,

GFP ATOMIC)))

usb submit urb(ARG0) →
usb submit urb(ARG0,

GFP ATOMIC)

3
vvmmmmmmm

4
²²

ε →
GFP ATOMIC

usb submit urb(ARG0) →
usb submit urb(ARG0, CODE)

5²²
usb submit urb(CODE) →
usb submit urb(CODE, CODE)

usb submit urb(ARG0) →
usb submit urb(ARG0,

GFP ATOMIC)

xxrrrrrrrrrr

²²
ε →
GFP ATOMIC

usb submit urb(ARG0) →
usb submit urb(ARG0, CODE)

²²
usb submit urb(CODE) →
usb submit urb(CODE, CODE)

Figure 9: Trees used in matching modifications across multiple files. The tree on the left is from
drivers/usb/net/rtl8150.c and the one on the right is from drivers/usb/misc/auerswald.c. The modifications
that would be detected are boxed.

To find collateral evolutions within subterms, we use a
matching algorithm that considers for each difference a tree
consisting of the difference, its subterms, and abstractions
of the subterms. The tree for the above difference is shown
on the left side of Figure 9. The root of the tree is the differ-
ence itself. The various subterm and abstraction strategies
illustrated by its descendents are as follows:

• Replace identifiers by EXPn, as illustrated by arrow 1.
This abstraction eliminates the dependence on local
variable names, which may vary between usage con-
texts.

• Extract a maximal difference from the subterms, as
illustrated by arrows 2 and 3. In the difference at the
target of arrow 3, ε → GFP ATOMIC on the left side
of the transformation indicates that GFP ATOMIC is
added, rather than replacing existing code.

• Replace unabstracted function arguments by CODE,
as illustrated by arrow 4. In this example, this ab-
straction would allow detecting the case where a sec-
ond argument is added to usb submit urb, but there
is no discernible pattern in the choice of the new value.

• Replace abstracted function arguments (EXPn or ARGn)
by CODE, as illustrated by arrow 5. In this example,
this abstraction would allow detecting the case where
there are changes in the existing argument as well as
the addition of a new one.

Other abstractions are possible; for example, we could con-
vert various permutations of the unabstracted function ar-
guments to CODE rather than converting them all at once.
Furthermore, we do not consider over-abstracted differences,
such as ε → CODE, which would match any added de-
vice specific code, even code that has nothing to do with
the difference represented here. The choices we have made
limit the computational complexity of the analysis, and seem
to work well in practice, based on our crosschecking with
the manually studied collateral evolutions described in Sec-
tion 3.2.2.

Given the collection of trees representing all of the modifi-
cations, the patch analyzer compares all of the modifications
in all of the trees from the largest modification to the small-
est, discarding a subtree as soon as the root matches enough

other modifications to satisfy the threshold. As an exam-
ple, if we assume that the only available modifications are
those shown on the left and right sides of Figure 9, then the
matching process would first consider the largest modifica-
tion if((res = usb submit urb(ARG0))) → . . . , then the ab-
stracted modification if((EXP0 = usb submit urb(ARG0))) →
. . . , which is the next-largest one, and finally the subterm
modification usb submit urb(ARG0) → usb submit urb(ARG0,

GFP ATOMIC), which it finds to occur in both trees. Assuming
that there are enough other occurrences of this difference to
satisfy the threshold, this difference would be reported as
the result.

We use this analysis not only to detect collateral evolution
sites, as quantitatively analyzed in Section 5.5, but also to
detect evolutions in interfaces themselves, as quantitatively
analyzed in Section 5.4. Specifically, a collateral evolution
that directly affects an interface element is also an indicator
of an evolution in the interface.

Note that our patch analyzer detects only modifications
that occur at the level of individual C statements or ex-
pressions. We refer to such modifications as micro collateral
evolutions. The collateral evolutions studied in our man-
ual analysis, on the other hand, often amount to a collec-
tion of such modifications, and we thus refer to them as
macro collateral evolutions. For example, the introduction of
video usercopy, described in Section 4.2, involves changing
not only a function’s parameter type, but also local variables
and function calls scattered throughout its body. The mea-
surements in the rest of this section, however, are concerned
only with number of lines affected by collateral evolutions in
device-specific code, rather than on the number of (macro)
collateral evolutions themselves. Thus, the precision of the
patch analyzer is sufficient for our purposes.

5.3 Interfaces
Because collateral evolutions are derived from interface

changes, the size and distribution of interfaces is a measure
of the potential difficulty of collateral evolution in device-
specific code. We consider the relationship between inter-
faces and device-specific code from the perspective of the
maintainer of a single device-specific file and from the per-
spective of the library developer.

Interface complexity from the perspective of the main-
tainer of device-specific code.The number of library
functions used by device-specific code is a measure of the
code’s complexity, as the maintainer must understand each
of these functions, including its arguments and associated
protocols. Figure 10a shows the number of library functions
used by each device-specific source file. This figure shows
clearly that not only has the size of the driver code doubled
in the last five years since Linux 2.4.0, but also the com-
plexity. Indeed, substantially more device-specific files refer
to up to 20 library functions in Linux 2.6.13 than in Linux
2.4.0. Furthermore, in Linux 2.4.0 the largest number of li-
brary function references per file is 36 while in Linux 2.6.13
this number has jumped to 59.

We may further refine the assessment of the complexity
of device-specific code by taking into account the library
structure. Each driver support library represents a unit of
understanding, and thus code that relies on multiple driver
support libraries requires more expertise to maintain than
code that relies on only one. Figure 10b shows the number
of libraries on which each file depends. In Linux 2.4.0 only
169 files rely on three or more libraries, while in Linux 2.6.13
this number has increased to 501.

 0 10 20 30 40
 n

0

50

100

150

 d
ev

ic
e

sp
ec

if
ic

 f
ile

s

us
in

g
n

lib
ra

ry
 f

un
ct

io
ns

2.4.0

 0 10 20 30 40 50 60
n

0

50

100

150
2.6.13

 1 2 3 4 5
n

0

200

400

600

800

 d
ev

ic
e

sp
ec

if
ic

 f
ile

s
us

in
g

n
lib

ra
ri

es

2.4.0

 1 2 3 4 5 6 7
n

0

200

400

600

800
2.6.13

(a) referenced library functions (n)
per device-specific file

(b) referenced libraries (n)
per device-specific file

Figure 10: (a) Library function references and (b)
library references in Linux 2.4.0 and Linux 2.6.13

Interface complexity from the perspective of the devel-
oper of a driver-support library.We measure the com-
plexity of an interface in terms of the number of functions
it exports, as shown in Figure 11a. While the number of
library functions exported by the typical interface is under
20 in both Linux 2.4.0 and Linux 2.6.13, the maximum num-
ber of exported library functions increases significantly, from
around 80 in Linux 2.4.0 to around 130 in Linux 2.6.13.

When a change occurs in the interface of a driver sup-
port library, collateral evolution is needed in all dependent
device-specific code. The difficulty of performing this col-
lateral evolution depends not only on the number of files
involved, but also on the distribution of these files across
different directories, as files in other directories may not be
known to the library developer and may exhibit unique code
patterns. For example, Figure 12 shows the distribution of
the use of the USB driver support library across the various
driver directories. While most of the uses are in the usb

directory, there are a few uses in each of 9 other directories.
More generally, Figures 11b and 11c show the number

of device-specific files depending on each interface and the
number of directories containing at least one device-specific
file with such a dependency. Again, the maximum number

 0 20 40 60 80
n

0

5

10

15

20

 in
te

rf
ac

es

ex
po

rt
in

g
n

fu
nc

ti
on

s

2.4.0

 0 20 40 60 80 100 120 140
n

0

5

10

15

20

2.6.13

(a) exported library functions (n) per interface

 0 100 200
n

0

5

10

15

20

25

in
te

rf
ac

es

ha
vi

ng
 n

 c
lie

nt
 f

ile
s 2.4.0

 0 100 200 300 400
n

0

5

10

15

20

25

2.6.13

 0 10 20 30 40
n

0

20

40

60

80

 in
te

rf
ac

es

ha
vi

ng
 n

 c
lie

nt
 d

ir
ec

to
ri

es

2.4.0

 0 10 20 30 40 50 60 70 80 90
n

0

20

40

60

80
2.6.13

(b) client files (n) per interface (c) client directories (n) per interface

Figure 11: (a) Interface size and (b,c) interface us-
age in Linux 2.4.0 and Linux 2.6.13

 drivers/block

 drivers/bluetooth

 drivers/char

 drivers/input

 drivers/isdn

 drivers/media

 drivers/net

 drivers/usb

 drivers/w1

 sound/usb

1

10

100

F
ile

s

Figure 12: References to the USB driver support
library

has doubled between Linux 2.4.0 and Linux 2.6.13. In Linux
2.6.13, the most widely used library is PCI, which is the
basic bus used on PCs. The network device and ethernet
support libraries are the next most widely used. The USB
support library is also among the most widely used, being
used by 131 files.

5.4 Quantitative assessment of evolution
Figure 13 shows the number of evolutions that have oc-

curred in library functions, device-specific callback func-
tions, data structures, and protocols in the versions of Linux
between 2.2 and 2.6. In the current state of our patch ana-
lyzer, protocols are detected only as the addition or deletion
of single function calls. The most significant number of evo-
lutions occurs in library functions, with an increase across
the versions of Linux that roughly mirrors the increase in
code size.

It is interesting to compare the number of evolutions in the
unstable versions 2.3 and 2.5 and their stable derivatives 2.4
and 2.6. The stable Linux 2.4 had slightly more evolutions
than the unstable version 2.3, but was the main version of
Linux for almost three years, while Linux 2.3 was only under
development for one year. In the case of Linux 2.5 and Linux
2.6, the so-called stable Linux 2.6 has had almost as many
evolutions as the unstable Linux 2.5. The current age of

Linux 2.6 is about the same as the time in which Linux
2.5 was under development, but we can expect Linux 2.6
to be the main version for some time longer, and thus to
accumulate even more evolutions.

Library
functions

Device-specific
callback functions

Data structures Protocol
0

200

400

600

800

in
te

rf
ac

e
ch

an
ge

s Linux 2.2
Linux 2.3
Linux 2.4
Linux 2.5
Linux 2.6

Figure 13: Number of evolutions in interface ele-
ments in Linux 2.2 to Linux 2.6

5.5 Quantitative assessment of collateral evo-
lution

Figure 14 assesses the number of lines modified due to
collateral evolutions from the first patch file for Linux 2.2
to the patch file for Linux 2.6.13. We observe that while
the number of lines affected by collateral evolutions varies
from one version to the next, there is a general increasing
trend, with a significant increase in Linux 2.6. In terms of
the percentage of lines modified due to collateral evolution
as compared to the the number of lines modified overall in
device-specific code, we see that the biggest spikes, of up
to 35%, occur in the unstable versions. We conjecture that
OS developers postpone evolutions that may induce many
collateral evolutions until these versions, due to the amount
of work that they entail.

 2.2.1 2.3.1 2.4.1 2.5.1 2.6.1
0

2000

4000

6000

8000

10000

lin
es

 2.2.1 2.3.1 2.4.1 2.5.1 2.6.1
0

10

20

30

%

Figure 14: Patch file lines and percentage of patch
file lines derived from device-specific code and con-
taining collateral evolutions in Linux 2.2 to Linux
2.6

Figure 15 measures the magnitude of individual collat-
eral evolutions in terms of the number of sites affected and

terms of the number of files affected. On average, a collat-
eral evolution is required at around 14 sites and in a total of
10 files. Nevertheless, many collateral evolutions are much
more pervasive, with one change in library function affect-
ing around 1000 sites in Linux 2.6. Overall, collateral evolu-
tions in library functions and protocols affect both the most
sites and files. Collateral evolutions in library functions vary
from simple textual replacement to cases that involve careful
analysis of the source code. Protocol changes that involve
adding new functions, on the other hand, are often difficult,
as they require situating new code within a context whose
precise structure can vary.

Library
functions

Device-specific
callback functions

Data structures Protocol
0

200

400

600

800

1000

si
te

s
pe

r
ch

an
ge

Max Linux 2.2
Max Linux 2.3
Max Linux 2.4
Max Linux 2.5
Max Linux 2.6
Average Linux

Library
functions

Device-specific
callback functions

Data structures Protocol
0

100

200

300

400

fi
le

s
pe

r
ch

an
ge

Figure 15: Maximum number of sites and files af-
fected by a single collateral evolution

6. CONCLUSION
In this paper, we have shown that the evolution of driver

support libraries is a critical issue for the maintenance of
device-specific code. Nevertheless, this issue has received
little attention from researchers. Based on a manual study
of device-specific code, we have identified a taxonomy of ef-
fects that an evolution in a driver support library can have
on the interface with device-specific code and have charac-
terized the collateral evolutions in device-specific code that
these effects trigger. We have also developed automatic tools
that assess the extent of the collateral evolution problem,
based on analysis of Linux versions released over the last six
years. As part of this analysis, we have identified the grow-
ing complexity of Linux driver support library interfaces,
suggesting that collateral evolution will, if anything, be a
greater problem in the future.

At present, our patch analyzer only detects micro col-
lateral evolutions, while the collateral evolutions identified
manually often involve a collection of such changes. We
are planning to investigate heuristics for combining multiple
micro collateral evolutions into a coherent macro collateral
evolution. Such an automated detection of macro collat-
eral evolutions would allow a finer assessment of the com-
plexity of the collateral evolutions that occur across Linux

versions and would improve the detection of protocols, as
compared to our current analysis, which only considers in-
dividual added and dropped function calls.

The pervasiveness of the need for collateral evolutions in
device-specific code, as identified in this paper, calls for the
development of tools to aid the driver maintainer in this
task. Our long term goal is to design a tool, Coccinelle,1

that provides a formal notation for describing collateral evo-
lutions and a transformation engine to assist developers in
applying them. As a proof of concept, we plan to use this
tool to return “back to the future” of Linux 2.4 and replay
the evolution to Linux 2.6. The analysis of collateral evo-
lutions conducted in this work thus represents a first step
towards making collateral evolution easy and robust, in or-
der to improve the reliability of device support in operating
systems.

Acknowledgments
We would like to thank Damien Deville for his contributions
to the initial study of collateral evolutions, and our shepherd
Brian Bershad for his help in refining the paper. This work
has been supported in part by the Agence Nationale de la
Recherche (France) and the Danish Research Council for
Technology and Production Sciences.

Availability
The various tools developed for this work, including the
patch analyzer, are available at the following URL:

http://www.emn.fr/x-info/coccinelle/

7. REFERENCES
[1] J. Appavoo, M. Auslander, M. Burtico, D. D. Silva,

O. Krieger, M. Mergen, M. Ostrowski, B. Rosenburg, R. W.
Wisniewski, and J. Xenidis. K42: an open-source
Linux-compatible scalable operating system kernel. IBM
Systems Journal, 44(2):427–440, 2005.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and
A. Ustuner. Thorough static analysis of device drivers. In
The first ACM SIGOPS EuroSys conference (EuroSys
2006), Leuven, Belgium, Apr. 2006. To appear.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. In SOSP’01
[21], pages 73–88.

[4] A. C. de Melo, D. Jones, and J. Garzik, 2001.
http://umeet.uninet.edu/umeet2001/talk/15-12-2001/
arnaldo-talk.html.

[5] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the Fourth USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), pages 1–16, San Diego, CA, Oct.
2000.

[6] D. R. Engler, D. Y. Chen, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in
systems code. In SOSP’01 [21], pages 57–72.

[7] J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller.
Think: A software framework for component-based
operating system kernels. In 2000 USENIX Annual
Technical Conference, pages 73–86, Monterey, CA, June
2002.

[8] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A substrate for kernel and
language research. In Proceedings of the 16th ACM

1A coccinelle is a ladybug, which is an insect that eats
smaller bugs.

Symposium on Operating Systems Principles (SOSP’97),
pages 38–51, Saint-Malo, France, Oct. 1997.

[9] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type
qualifiers. In Proceedings of the 2002 ACM SIGPLAN
conference on Programming Language Design and
Implementation, pages 38–51, Berlin, Germany, June 2002.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

[11] M. W. Godfrey and Q. Tu. Evolution in open source
software: A case study. In International Conference on
Software Maintenance (ICSM’00), pages 131–142, San
Jose, CA, 2000. IEEE.

[12] A. E. Hassan. Mining Software Repositories to Assist
Developers and Support Managers. PhD thesis, School of
Computer Science, Faculty of Mathematics, University of
Waterloo, Ontario, Canada, 2004.

[13] C. Hellwig, 2003. http://www.cs.helsinki.fi/linux/linux-
kernel/2003-20/1120.html.

[14] P. Koellner, Feb. 2002.
http://www.uwsg.iu.edu/hypermail/
linux/kernel/0202.2/0106.html.

[15] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified
device driver reuse and improved system dependability via
virtual machines. In OSDI’04 [19], pages 17–30.

[16] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool
for finding copy-paste and related bugs in operating system
code. In OSDI’04 [19], pages 289–302.

[17] LWN. API changes in the 2.6 kernel series, Oct. 2005.
http://lwn.net/Articles/2.6-kernel-api/.

[18] D. S. Miller, Feb. 2002. http://www.ussg.iu.edu/hypermail/
linux/kernel/0202.1/0855.html.

[19] Proceedings of the Sixth USENIX Symposium on Operating
Systems Design and Implementation (OSDI), San
Fransisco, CA, Dec. 2004.

[20] A. Rubini and J. Corbet. Linux Device Drivers, 2nd
Edition. O’Reilly, June 2001.

[21] Proceedings of the 18th ACM Symposium on Operating
System Principles, Banff, Canada, Oct. 2001.

[22] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M.
Levy. Recovering device drivers. In OSDI’04 [19], pages
1–16.

[23] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving
the reliability of commodity operating systems. ACM
Transactions on Computer Systems, 23(1):77–110, Feb.
2005.

[24] D. Wambolt, Dec. 2001.
http://seclists.org/lists/linux-kernel/2001/Dec/2027.html.

[25] J. Weber, Feb. 2002. http://www.ussg.iu.edu/hypermail
/linux/kernel/0202.1/0697.html.

