
Fourth Coccinelle Workshop – Exercises

January 26, 2011

These exercises are presented roughly in order of increasing difficulty. Often there are multiple
possible solutions to the exercise, which may produce different sets of reports and different sets of
false positives.

1 Getter and setter functions

Part 1 The Linux file include/linux/ide.h defines the following functions:

static inline void *ide_get_hwifdata (ide_hwif_t * hwif)

{

return hwif->hwif_data;

}

static inline void ide_set_hwifdata (ide_hwif_t * hwif, void *data)

{

hwif->hwif_data = data;

}

Write a semantic patch that transforms an access to the hwif data field of a ide hwif t structure
into a call to ide get hwifdata, and that transforms an assignment of the hwif data field of a
ide hwif t structure into a call to ide set hwifdata. (Hint: ide hwif t is defined using typedef.
To use it in a SmPL rule, you have to declare it like a metavariable: typedef ide hwif t;.)

Part 2 The Linux file include/linux/device.h defines the following function:

static inline void *dev_get_platdata(const struct device *dev)

{

return dev->platform_data;

}

1



There is no corresponding setter function. Write a semantic patch that transforms accesses to the
platform data field of a device structure into calls to dev get platdata.

Part 3 (Harder) In your solutions to the above exercises you probably observed that the code in
the functions ide get hwifdata, ide set hwifdata, and dev get platdata was changed as well.
Use position variables to ensure that this code is not changed.

2



2 Zeroed Memory Allocation

2.1 Part 1

In Linux, the basic memory allocation function is kmalloc. A common pattern, however, is to
allocate a region of memory and then zero its elements using the function memset. An example of
this pattern is as follows, from the file staging/brcm80211/sys/wl mac80211.c:

t = kmalloc(sizeof(wl_timer_t), GFP_ATOMIC);

if (!t) {

WL_ERROR("wl%d: wl_init_timer: out of memory\n", wl->pub->unit);

return 0;

}

memset(t, 0, sizeof(wl_timer_t));

Rather than having first the call to kmalloc and then the call to memset, it was judged to be better
to encapsulate these operations in a single function, kzalloc, that both allocates and zeros the
memory. Using kzalloc, the above code would be written as:

t = kzalloc(sizeof(wl_timer_t), GFP_ATOMIC);

if (!t) {

WL_ERROR("wl%d: wl_init_timer: out of memory\n", wl->pub->unit);

return 0;

}

Write a semantic patch to perform this transformation throughout the Linux kernel. To reduce the
running time, it would be sufficient to test your rule on drivers/staging.

2.2 Part 2

When the memory to be allocated is to be used as an array, it is better to use the function kcalloc.
This function does essentially the same thing as kzalloc, but it checks the dimensions of the array
(number of elements and size of each element) for possible overflow before multiplying these values
to compute the total size. An example of code that could be written using kcalloc is as follows,
from arch/x86/platform/uv/uv time.c:

blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);

if (!blade_info)

return -ENOMEM;

memset(blade_info, 0, uv_possible_blades * sizeof(void *));

3



This code should be rewritten as:

blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);

if (!blade_info)

return -ENOMEM;

Extend your semantic patch from part 1 to perform this transformation.

3 NULL pointer dereferences

Brad Spengler constructed a Linux kernel exploit that was enabled by the following fragment of
code in drivers/net/tun.c:

static unsigned int tun_chr_poll(struct file *file, poll_table * wait)

{

struct tun_file *tfile = file->private_data;

struct tun_struct *tun = __tun_get(tfile);

struct sock *sk = tun->sk;

unsigned int mask = 0;

if (!tun)

return POLLERR;

...

}

The problem is that the variable tun is dereferenced before it is checked for being NULL, and it can
actually be NULL in practice. The solution is to move the initialization of sk below the NULL test.

Write a semantic patch to perform this transformation. There are many ways to do this, and those
that are more general also tend to find more false positives. One approach, which should have no
false positives, is to try to stay very close to the pattern illustrated by the example above.

4



4 More NULL pointer dereferences

Often when an error is detected, one would like to print out some information about the context
in which the error occurs. It turns out that when the error is that some pointer is NULL, it is
a common mistake to try to print out some information that should have been stored under that
pointer. An example is as follows, from drivers/media/dvb/firewire/firedtv-1394.c:

if (!fdtv) {

dev_err(fdtv->device, "received at unknown iso channel\n");

goto out;

}

Write a semantic patch to detect dereferences under a NULL test. Note that such a dereference
may occur any number of times.

5 Unchecked memory allocation

5.1 Part 1

Memory allocation using kmalloc, kzalloc, or kcalloc can fail, in which case the result is NULL.
The calling code should thus always check that it has received a valid pointer. Nevertheless, some
code does not perform this check, as illustrated by the following, from drivers/staging/stlc45xx/stlc45xx.c.

entry = kmalloc(sizeof(*entry), GFP_ATOMIC);

entry->start = pos;

Write a semantic patch to find cases where the result of calling kmalloc is dereferenced with no
previous NULL pointer test.

5.2 Part 2

Sometimes a helper function is defined to perform the memory allocation. In the simplest case,
this function just returns the result of calling kmalloc. The result of calling such a helper function
should be tested for NULL as well before being dereferenced. Write a semantic patch to find cases
where the result of calling such a helper function is dereferenced with no previous NULL pointer
test.

5



6 & on function names

Some Linux code uses & in front of a function name when the function name is used as an expression,
even though this is not necessary.

i = request_irq(dev->irq, &el3_interrupt, 0, dev->name, dev);

Although this code is not incorrect, it is odd to do this in the case where everywhere else in the
file, function names are used as expressions directly. Write a semantic patch to do the following:

1. Count the number of occurrences of a function name with & and the number of occurrences
without &.

2. Detect the case where there is only one occurrence of a function name with & and many
occurrences without &.

3. Transform the occurrence of a function name with & so that it does not use &.

6


