
How Often do Experts Make Mistakes?

Nicolas Palix
DIKU-APL

University of Copenhagen
Denmarknpalix�diku.dk Julia L. Lawall

INRIA Regal/LIP6
University of Copenhagen

France/Denmarkjulia�diku.dk Gaël Thomas Gilles Muller
INRIA Regal/LIP6

France{Gael.Thomas, Gilles.Muller}�lip6.fr
Abstract
Large open-source software projects involve developers with a
wide variety of backgrounds and expertise. Such software projects
furthermore include many internal APIs that developers must un-
derstand and use properly. According to the intended purpose of
these APIs, they are more or less frequently used, and used byde-
velopers with more or less expertise. In this paper, we studythe
impact of usage patterns and developer expertise on the rateof
defects occurring in the use of internal APIs. For this preliminary
study, we focus on memory management APIs in the Linux ker-
nel, as the use of these has been shown to be highly error prone
in previous work. We study defect rates and developer expertise,
to considere.g., whether widely used APIs are more defect prone
because they are used by less experienced developers, or whether
defects in widely used APIs are more likely to be fixed.

Categories and Subject DescriptorsD.2.8 [Software Engineer-
ing]: Metrics—Process metrics, Product metrics; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Patterns

General Terms Measurement, Languages, Reliability

Keywords History of pattern occurrences, bug tracking, Herodotos,
Coccinelle

1. Introduction
To ease development, large-scale software projects are often decom-
posed into multiple interdependent and coordinated modules. Soft-
ware developers working on one module must then be aware of,
and use properly, functions from the APIs of other modules. When
a usage protocol is associated with these API functions, it must be
carefully followed to ensure the reliability of the system.Large-
scale software projects typically also impose coding conventions
that should be followed throughout the software project andare
not specific to any given API. These conventions ease code under-
standing, facilitate code review, and ease the maintenanceprocess
when many developers are involved in a particular piece of code
and when new developers begin to work on the software project.

In this paper, we investigate the degree to which developersat
different levels of expertise respect API usage protocols and cod-
ing conventions. We focus on the Linux operating system, which
as an open source system makes its complete development history
available. Furthermore, we focus on memory management APIs, as
their use has been found to be highly error prone [3]. The Linux ker-
nel indeed provides both a general-purpose memory management
API and highly specialized variants. Thus, it is possible tocom-
pare defect rates in APIs that have a related functionality but that
require different degrees of expertise to use correctly. Wespecifi-
cally assess the following hypotheses that may be considered to be
generally relevant to open-source software:

1. Defects are introduced by less experienced developers.

2. Frequently used APIs are used by developers at all levels of
experience, and thus have a high rate of defect occurrences.
Nevertheless, these defects are likely to be fixed.

3. Rarely used APIs are used by only highly experienced develop-
ers, and thus have a low rate of defect occurrences. Neverthe-
less, these defects are less likely to be fixed.

4. Coding style conventions are well known to experienced devel-
opers.

5. The frequency of a defect varies inversely with its visible im-
pact, i.e., defects causing crashes or hangs occur less often,
while defects that have a delayed or cumulative effect such as
memory leaks occur more frequently.

To assess these hypotheses, several challenges must be ad-
dressed. First, we need to mine the Linux code base to find the
occurrences of defective code across the history of the different
versions of the software project. Next, we need to identify the de-
veloper who introduced each defect. Finally, we need a meansto
evaluate the level of expertise of the developer at the time the de-
fect was introduced. To address these issues, we use the Coccinelle
source code matching tool to detect defects in the uses of memory
management functions, focusing specifically on code that violates
the usage protocol of the memory management API, code that
does not satisfy the global Linux kernel coding style, and code that
uses memory management functions inefficiently. We then usethe
Herodotos tool [7] to correlate the defect occurrences across the
different versions. Finally, we use the git [4] source code manager
used by Linux kernel developers for version control in orderto
extract information about developer expertise.

2. Linux Memory Management APIs
In user-level code, the most common memory management func-
tions aremallo
 andfree. These functions are, however, not avail-
able at the kernel level. Instead, the kernel provides a variety of
memory management APIs, some generic and others more special-
purpose. We first describe the commonalities in these APIs and then
present four Linux kernel memory management APIs in detail.

2.1 Common behavior and potential defects

All of the memory management APIs defined in the Linux kernel
impose essentially the same usage protocol, as shown in Figure 1
and illustrated by the following code:

x = alloc(size,flag);
if (x == NULL) { . . . return −ENOMEM; }. . .
free(x);

choose flag

free resulttest result

choose size

construct call

Figure 1. Usage protocol for Linux kernel memory management
functions

Name Description Potential Impact

sizeof Size argument expressed as the size of a
type rather than the result of dereferencing
the destination location.

coding style

noderef Size argument expressed as the size of a
pointer, rather than the pointed type.

buffer overflow

flag Flag that allows locking when a lock is
already held.

hang

cast Cast on the result of an allocation function. coding style
null test Missing NULL test on the result of an allo-

cation function (inverted when NULL test
is not required).

crash

free Missing deallocation of a pointer that is
only accessible locally.

memory leak

memset Explicit zeroing of the allocated memory
rather than allocating using a zeroing allo-
cation function.

inefficient

array alloc Allocation of an array without using a dedi-
cated array-allocating function.

buffer overflow

Table 1. Defect kinds studied

In this usage protocol, the allocation function takes two arguments:
a size indicating the number of bytes to allocate and a flag indicat-
ing how the allocation may be carried out. The allocation function
then returns either a pointer to the allocated region of memory orNULL, indicating that some failure has occurred. This result must
thus be tested forNULL before using the allocated memory. Finally,
the allocated memory should be freed when it is not useful any
more, using the corresponding deallocation function.

Each step in this usage protocol introduces possibilities for
defects. These defects may be violations of the Linux kernelcoding
style, that at best only have an impact on the maintainability of the
code, or they may induce runtime errors, such as buffer overflows,
hangs, crashes, or memory leaks. These defects are summarized in
Table 1 and are described in detail below, for each step of theusage
protocol:

Choose size The size argument to a memory allocation function
is typically determined by the type of the location that stores the
result of the call. One possibility is to express the size explicitly in
terms of the type of this location (defect “sizeof”):

x = kmalloc(sizeof(struct foo),. . .);
The Linux kernelcoding style, however, suggests to express the
size as the size of the result of dereferencing the location itself:

x = kmalloc(sizeof(*x),. . .);
This strategy makes the size computation robust to changes in the
type ofx.

The approach preferred by the Linux kernel coding style, how-
ever, introduces the possibility of another kind of defect,in which
the size is computed in terms of the pointer itself, instead of what
it references,e.g.:

x = kmalloc(sizeof(x),. . .);
In this case, only a few bytes are allocated, leading to a likely
subsequentbuffer overflow (defect “noderef”).

Pattern
Memory Management API

Standard Node Cache Bootmem

basic 4 240 52 264 105
array 363 N/A N/A N/A
zeroing 5 125 25 96 N/A

TOTAL 9 728 77 360 105

Table 2. Number of occurrences of the memory allocation func-
tions in Linux 2.6.32 (released December 2009)

Choose flag The flag argument indicates some constraints on the
memory allocation process. The most common values areGFP_-KERNEL, indicating that the memory allocation process may sleep
if adequate memory is not immediately available, andGFP_ATOMIC,
indicating that such sleeping is not allowed, typically because the
function is called in a context in which interrupts are turned off.
Using GFP_ATOMIC whereGFP_KERNEL could be used can cause
the memory allocation to fail unnecessarily, while usingGFP_-KERNEL whereGFP_ATOMIC is required canhangthe kernel (defect
“flag”).

Construct call The Linux kernel memory allocation functions
have return typevoid *, while the location that stores the result
typically has some other type, such as that of a pointer to some
structure. Some programmers thus cast the result of the memory
allocation to the destination type. Such a cast is, however,not
required by the C standard and is against the Linux kernelcoding
style (defect “cast”).

Test result If the pointer resulting from a call to an allocation func-
tion is not immediately tested for being NULL, then the first deref-
erence of a NULL result will normallycrash the kernel (defect
“null test”). This dereference may be far from the allocation site,
making the problem difficult to diagnose.

Free result In Linux kernel code, a common pattern is for one
function to allocate multiple resources. Each of these allocations
may fail, in which case all of the previously allocated resources
must be freed. Neglecting to free allocated memory in the case of
such a failure causes amemory leak (defect “free”).

2.2 The specific APIs

The Linux kernel provides a number of different memory manage-
ment APIs for different purposes. These differ in when they can be
invoked and the features they provide. The APIs we consider are
described below. Table 2 summarizes the usage frequency of their
allocation functions.

Standard kmallo
 is the standard memory allocation function
in the Linux kernel, comparable tomallo
 at the user level. Two
variants have recently been introduced.k
allo
 was introduced
in Linux 2.6.9 (October 2004) for allocating arrays. This function
takes the number of elements and the size of each element as sep-
arate arguments, and protects against the case where their product
overflows the size of an integer. The elements of the array arealso
initialized to 0.kzallo
 was introduced in Linux 2.6.14 (October
2005) for allocating a region of memory in which all elementsare
initialized to 0 but that is not an array. Memory allocated with all
of these functions is freed usingkfree.

Node kmallo
_node targets NUMA architectures, where mem-
ory may be local to a processor or shared between a subset of the
processors, and access to non-local memory is very expensive. This
function thus takes an extra argument that specifies the nodethat
should be associated with the allocated memory.kzallo
_node
is kmallo
_node’s zeroing counterpart. Memory allocated with
both of these functions is freed usingkfree. Some other variants

of these functions exist that aid in debugging, but these arerarely
used and we do not consider them further.

Cache kmem_
a
he_allo
 allocates memory from a previously
allocated memory cache.kmem_
a
he_zallo
 is its zeroing coun-
terpart. Memory allocated with both of these functions is freed us-
ing kmem_
a
he_free.

Boot These functions must be used to allocate memory during
the booting process. They are analogous tokzallo
 in that the
memory is already zeroed. They furthermore always return a valid
pointer, neverNULL; in the case of an allocation error, the kernel
panics. These functions do not take a flag argument. We consider
only the allocation functionsallo
_bootmem, allo
bootmem-low, allo
_bootmem_pages, andallo
_bootmem_low_pages.
Memory allocated with all of these functions is freed usingfree_-bootmem.

In addition to the defect types outlined in Section 2.1, the dif-
ferent features of the memory management functions within each
API introduce the possibility of using one of these functions in the
wrong situation. In terms of defects, we consider cases where the
zeroing and array allocating variants, if available, are not used and
the corresponding code is inlined into the call site (defects “mem-
set” and “array alloc”, respectively). For theallo
_bootmem func-
tions, which do zero the memory and do not returnNULL, we con-
sider code that performs unnecessary zeroing andNULL test opera-
tions. These mistakes essentially only impact the efficiency of the
code, but may also impact readability, and thus subsequent code
maintenance.

3. Tools
To carry out our study, we use the following tools: 1) Coccinelle to
find occurrences of defects in recent versions of the Linux source
tree, 2) Herodotos to correlate these occurrences across multiple
versions, and 3) git to identify the developer responsible for intro-
ducing each defect occurrence and to obtain information about the
other patches submitted by this developer. Coccinelle is applicable
to any software implemented in C. Herodotos is applicable toany
software at all, as it is language-independent. Git can alsobe used
to access developer information for any software, as long asit or
some compatible tool has been used as the version control manager
during the software’s development.

3.1 Coccinelle

Coccinelle is a tool for performing control-flow based pattern
searches and transformations in C code [2, 6]. It provides a lan-
guage, SmPL, for specifying searches and transformations and an
engine for performing them. In this work, we use SmPL to cre-
ate patterns representing defects and then use Coccinelle to search
for these patterns across different versions of the Linux source
tree. Patterns are expressed using a notation close to source code,
but may containmetavariablesto represent arbitrary sub-terms. A
metavariable may occur multiple times, in which case all occur-
rences must match the same term. SmPL furthermore provides the
operator “...”, which connects separate patterns that should be
matched within a single control-flow path. This feature allows, for
example, matching an execution path in which there is first a call
to a memory allocation function and then a return with no interven-
ing save or free of the allocated data, amounting to a memory leak.
More details about Coccinelle, including numerous examples, are
found in previous work [2, 5, 6].

3.2 Herodotos

To understand how defects have been introduced in the Linux ker-
nel, we have tocorrelate the defect occurrences found by Coc-

Pattern
Memory Management API

Standard Node Cache Bootmem

sizeof 30.64% 28.57% N/A 16.19%
noderef 0 0 N/A 0.95%
flag 0.01% 0 N/A N/A
cast 0.79% 2.60% 6.39% 29.52%
null test 1.04% 6.49% 3.06% 8.57%
free 0.10% 0 0.56% 0
memset 2.92% 1.92% 3.03% 1.90%
array alloc 3.32% 2.60% 0.28% 0.95%

Table 3. Comparison for Linux 2.6.32

cinelle across multiple versions. Indeed, the position of adefect
may change across versions due to the addition or removal of other
code in the same file. To correlate defect occurrences, we usethe
Herodotos tool [7]. Herodotos uses Unix diff to identify thediffer-
ences in each affected file from one version to the next and thereby
predicts the change in position of a defect. If a defect of thesame
type is reported in the predicted position in the next version, they
are considered to be the same defect. Otherwise, the defect is con-
sidered to have been corrected. Herodotos also can be configured
to produce a wide variety of graphs and statistics representing the
defect history.

3.3 Git

Since version 2.6.12 (June 2005) Linux has used thegit version
control system [4]. Git maintains a graph representing the project
history, including commits, forks and merges. Each of theseoper-
ations is referenced by a SHA1 hash code. This hash code gives
access to the changes in the repository and some related meta-
information. For instance, Git registers the name and the email of
the author and the committer of a change, short and long descrip-
tions of the change, and the date on which the change was commit-
ted.

Git includes various options for browsing the commit history.
In this work, we use git to trace the contributions of each developer.
Starting from the earliest version in which Coccinelle findsa given
defect, we use theblameoption to find the name of the developer
who has most recently edited the defective line in a prior commit.
To evaluate the level of expertise of this developer, we thencount
the number of patches from this developer that were acceptedprior
to the one introducing the defect and the number of days between
the developer’s first accepted patch and the defective one. We
consider the level of expertise of the developer to be the product
of these two quantities.

4. Assessment
We now assess the hypotheses presented in Section 1 for the mem-
ory management APIs. To support our assessment, we have col-
lected various statistics. Table 3 presents the percentageof defect
occurrences as compared to all occurrences of each kind of mem-
ory allocation function for Linux 2.6.32, which is the most recent
version. Figure 2 presents the same information, but for allver-
sions since Linux 2.6.12. The defect Flag is omitted, because its
frequency is very close to 0. Figure 3 presents the average lifespan
of these defects. Finally, Figure 4 presents the number of develop-
ers introducing each kind of defect (on the X axis) and their average
level of expertise, calculated as described in Section 3.3.

Our assessment of each of the five hypotheses is as follows:

Defects are introduced by less experienced developersFigure 4
shows that in most cases, the expertise of the developers who
introduce defects is indeed low,i.e., they have participated in kernel
development for only a short time and have submitted only a few
patches. But for two defect types for the Node API and for one

2006
2007

2008
2009

2010

0

10

20

30

40

de
fe

ct
 %

(a) Bad sizeof

2006
2007

2008
2009

2010

0

10

20

30

40

de
fe

ct
 %

(b) Unneeded cast of void pointer

2006
2007

2008
2009

2010

0

5

10

15

de
fe

ct
 %

(c) Missing/unneeded NULL test

2006
2007

2008
2009

2010

0

1

2

de
fe

ct
 %

(d) Missing free

2006
2007

2008
2009

2010

0

5

10

15

20

25

de
fe

ct
 %

Standard
Node
Cache
Boot

(e) Unneeded memset

2006
2007

2008
2009

2010

0

1

2

3

de
fe

ct
 %

Standard array
Standard missing deref.
Boot missing deref.

(f) Other defects

Figure 2. Defect ratio per uses for each defect kind

Sizeof

No deref.

Flag
Cast

NULL test

Free
M

em
set

Array

0

1

2

3

Y
ea

rs

Standard
Node
Cache
Boot

Figure 3. Average defect lifespan

0

5

10

15

Le
ve

l o
f e

xp
er

tis
e

Standard
Node
Cache
Boot

N
/A

N
o

da
ta

N
/A

N
o

da
ta

N
/A

N
/A

N
/A

N
/A

N
/A

59
11

 2
9

 5
3

3

3

2

 5
97
2

 5
1

 8
1

 2
03
5

4

 4
9

 5
4

1

1

2

14
54

 1
4

 5
0

 1
0

 4
61

Sizeof

No deref.

Flag
Cast

NULL test

Free
M

em
set

Array

Figure 4. Developer expertise per allocator kind. No data means
no defects of the given type. N/A means the defect type is irrelevant
to the given API.

defect type for the Boot API, the average level of expertise is
relatively high. We conjecture that these APIs are mostly used
by experienced developers, and thus only experienced developers
introduce the defects. For Node, at least, the number of developers
in these cases is also very small.

Frequently used APIs have a high rate of defects, but these defects
are quickly fixed The Standard API is used much more frequently
than the others, and in some cases, notably sizeof and array,it has
a higher defect frequency as well. But it also has a lower defect
frequency for the remaining defect kinds. Some defect kindsshow
a slight or substantial decrease in their frequency for the Standard
API, notably the use ofmemset rather than the zeroing functionkzallo
. Such defects have an average lifespan of around one year,
while the lifespan of the comparable defect for the Boot API is two
years. Other defect kinds essentially remain steady, notably the non-

use of the array allocation functionk
allo
, which has an average
lifespan of two years. The frequency of this defect, however, is
consistently very low.

Rarely used APIs have a low rate of defects, but these defectsare
rarely fixed The data in Figure 2 does not support the hypothesis
of a low rate of defects, as it is often the rarely used APIs Node,
Cache, and Boot that have the highest frequency of defects. For
example, Boot has the highest rate of improper NULL tests. In
this case, the API has the special property that a NULL test is
not needed, and thus the results show that developers are notfully
familiar with the features of this API. The defect rates are relatively
stable, without the substantial drops over time seen in the case of
the much more frequently used Standard. Defects also have a long
lifespan, notably of typically two years or more for Boot.

Coding style conventions are well known to experienced develop-
ers This hypothesis is also not supported by Figure 2. The coding
style defects Sizeof and Cast indeed have the highest frequency of
all of the considered defects, and the frequencies are highest for
Node and Boot, respectively. These are are highly specialized APIs
and thus are only likely to be used by experienced developers. It
may be that such developers have a more specialized focus, and are
thus not aware of these conventions. Or these APIs may be consid-
ered less often when doing coding style cleanups.

The frequency of a defect varies inversely with its impactNoderef
is likely to lead to a kernel crash, as much less memory is allocated
than intended. Flag can cause a kernel hang. A missing free can
cause a memory leak. All of these defect kinds do indeed occur
very infrequently, as shown by Table 3. Missing NULL tests, how-
ever, are relatively frequent, found in up to 10% of all occurrences
for the Node API. We conjecture that the memory allocation func-
tions do not returnNULL very often, and thus the impact of the
defect is not seen very often in practice.

5. Related work
The closest work to this one is our paper at AOSD 2010 [7], which
presents Herodotos. The experiments in that paper have a larger
scope, as they consider four open source projects and a widerrange
of defects. In this paper, on the other hand, we consider in more
depth the defects in the use of a single type of API, in one software
project. We have also added the assessment of developer expertise
to the collected statistics. In future work, we will apply the analyses
presented here to the wider set of examples considered in theAOSD
paper.

Zhou and Davis assess the appropriateness of statistical models
for describing the patterns of bug reports for eight open source
projects [9]. They do not, however, distinguish between different
defect types, nor do they study the level expertise of the developers
who introduce the bugs. Chouet al. [3] do consider specific bug
types in earlier versions of Linux, but do not study developer
expertise.

Anvik and Murphy [1], and Schuler and Zimmermann [8] pro-
pose approaches to determine implementation expertise based on
mining bug reports and code repositories. However, they determine
who has expertise on a particular piece of code while we want to in-
vestigate the expertise of a developer who commits code containing
a particular defect.

6. Conclusion
In this paper, we have studied the history of a set of defect types
affecting a range of memory management APIs in the Linux kernel
code, considering both the percentage of defects as compared to
the total number of occurrences of each considered functionand
the expertise of developers that introduced these defects.Based
on this information, we have assessed a collection of hypotheses,
differentiating between widely used APIs and more specialized
ones. The hypotheses that the developers who introduce defects
have less experience, that defects in the use of widely used APIs
are fixed quickly, and that defects in the use of rarely used APIs
tend to linger are largely substantiated. On the other hand,the
percentage of defect occurrences does not appear to be correlated
to the frequency of use of the API, expert developers do not seem to
be more aware of coding conventions than less expert ones, and the
frequency of a defect is not always inversely related to its potential
impact. More work will be required to assess these hypotheses in
the context of Linux and the memory management APIs, as well as
other software projects and APIs.

Availability
The data used in this paper are available athttp://www.diku.dk/~npalix/a
p4is10/.

References
[1] J. Anvik and G. C. Murphy. Determining implementation expertise

from bug reports. InMSR ’07: Proceedings of the Fourth International
Workshop on Mining Software Repositories, Minneapolis, USA, May
2007. IEEE Computer Society.

[2] J. Brunel, D. Doligez, R. R. Hansen, J. Lawall, and G. Muller. A founda-
tion for flow-based program matching using temporal logic and model
checking. InThe 36th annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 114–126, Savannah, GA,
USA, Jan. 2009.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical
study of operating systems errors. InProceedings of the 18th ACM Sym-
posium on Operating System Principles, pages 73–88, Banff, Canada,
Oct. 2001.

[4] Git: The fast version control system.http://git-s
m.
om/.

[5] J. L. Lawall, J. Brunel, R. R. Hansen, H. Stuart, G. Muller, and N. Palix.
WYSIWIB: A declarative approach to finding protocols and bugs in
Linux code. InThe 39th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, (DSN 2009), pages 43–52, Esto-
ril, Portugal, June 2009.

[6] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and
automating collateral evolutions in Linux device drivers.In EuroSys
2008, pages 247–260, Glasgow, Scotland, Mar. 2008.

[7] N. Palix, J. Lawall, and G. Muller. Tracking code patterns over
multiple software versions with Herodotos. InProc. of the ACM
International Conference on Aspect-Oriented Software Development,
AOSD’10, Rennes and Saint Malo, France, Mar. 2010. To appear.

[8] D. Schuler and T. Zimmermann. Mining usage expertise from version
archives. InMSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories, pages 121–124, Leipzig,
Germany, May 2008.

[9] Y. Zhou and J. Davis. Open source software reliability model: an
empirical approach. In5-WOSSE: Proceedings of the fifth workshop
on Open source software engineering, pages 1–6, St. Louis, MO, USA,
2005. ACM.

A. SmPL files
A.1 alloc_sizevirtual org� r depends on org disable sizeoftype expr �type T,T1;
T *x;expression n;position p;��(
x�p = (T1)\(kmallo
 \| kzallo
 \)(<+. . . sizeof(T) . . .+>, . . .)
|

x�p = (T1)k
allo
(n, <+. . . sizeof(T) . . .+>, . . .))�s
ript:python�
p << r.p;
x << r.x;
xtype<< r.T;��
msg= "var: %s type: %s " % (x,xtype)
o

ilib.org.print safe todo(p[0℄,msg)
o

i.in
lude mat
h(False)
A.2 alloc_noderefvirtual org� r depends on org �expression *x;expression n;position p;��(
\(kmallo
 \| kzallo
 \)(<+. . . sizeof�p(x) . . .+>, . . .)
|k
allo
(n, <+. . . sizeof�p(x) . . .+>, . . .))�bad deref�position r.p;expression e;
onstant c;��
\(sizeof�p(*e) \| sizeof�p(c) \)�s
ript:python depends on !bad deref�
p << r.p;
x << r.x;��
msg= "var: %s" % (x)
o

ilib.org.print safe todo(p[0℄,msg)
o

i.in
lude mat
h(False)

http://www.diku.dk/~npalix/acp4is10/
http://git-scm.com/

A.3 gfp_kernelvirtual org�r depends on org�expression E1;position p;��(read lo
k irq
|write lo
k irq
|read lo
k irqsave
|write lo
k irqsave
|lo
al irq save
|spin lo
k irq
|spin lo
k irqsave) (E1,. . .);. . . when != E1

when any
\(kmallo
\|k
allo
\|kzallo
\)(. . .,<+. . . GFP KERNEL�p . . .+>)�s
ript:python�

p << r.p;��
msg="%s::%s" % (p[0℄.file, p[0℄.line)
o

ilib.org.print todo(p[0℄, msg)
o

i.in
lude mat
h(False)
A.4 cast_allocvirtual orgvirtual patch� depends on patch && !org disable dropcast �type T;��
− (T *)
\(k
allo
 \| kmallo
 \| kzallo
 \)(. . .)�r depends on !patch && org disable dropcast �type T;position p;��(T�p)\(kmallo
\|kzallo
\|k
allo
\)(. . .)�s
ript:python�

p << r.p;
t << r.T;��
msg= "%s" % (t)
o

ilib.org.print todo(p[0℄, msg)
o

i.in
lude mat
h(False)
A.5 alloc_nulltestvirtual org�r depends on org�type T;expression *x;identifier f ;
onstant char *C;position p1,p2;��

x�p1 = (T)\(kmallo
\|k
allo
\|kzallo
\)(. . .);. . . when != x == NULL
when != x != NULL
when != (x | | . . .)(kfree(x)

|

f (. . .,C,. . .,x,. . .)
|

f�p2(. . .,x,. . .)
|

x−>f�p2)�s
ript:python�
x << r.x;
p1 << r.p1;
p2 << r.p2;��
msg= "%s" % (x)
o

ilib.org.print todo(p1[0℄,msg)
o

ilib.org.print link(p2[0℄)
o

i.in
lude mat
h(False)
A.6 kmallocvirtual org�r exists�type T;lo
al idexpression x;statement S;expression E;identifier f,l;position p1,p2,p3;expression *ptr != NULL;��(if ((x�p1 = (T)\(kmallo
\|kzallo
\|k
allo
\)(. . .)) == NULL) S
|

x�p1 = (T)\(kmallo
\|kzallo
\|k
allo
\)(. . .);. . .if (x == NULL) S)
<. . . when != x

when != if (. . .) { <+. . .x. . .+> }(
goto�p3 l;
|

x−>f = E). . .>(return \(0\|<+. . .x. . .+>\|ptr\);
|return�p2 . . .;)�s
ript:python�
x << r.x;
p1 << r.p1;
p2 << r.p2;��
o

ilib.org.print todo(p1[0℄, x)for p in p2:
o

ilib.org.print link(p)
o

i.in
lude mat
h(False)

A.7 kzalloc// Options: −no includes−include headersvirtual org�r depends on org�type T;expression x;expression E1,E2;position p1,p2;statement S;iterator I ;��
x = (T)kmallo
�p1(E1,E2);. . . when != xif (x == NULL | | . . .) { . . . return . . .; }. . . when != x

when != for(. . .;. . .;. . .) S
when != while(. . .) S
when != I(. . .) Smemset�p2(x,0,. . .);�s depends on org exists�position r.p1,r.p2;��. . . when != kmallo
�p1memset�p2(. . .);�s
ript:python depends on !s�

p1 << r.p1;
x << r.x;��
msg="%s" % (x)
o

ilib.org.print safe todo(p1[0℄, msg)
o

i.in
lude mat
h(False)
A.8 kcalloc// Options: −no includes−include headersvirtual org�r depends on org exists�expression E1, E2,E3;position p;
onstant C1, C2;��(kmallo
(C1 * C2, E3)
|kzallo
(C1 * C2, E3)
|kmallo
�p(E1 * E2, E3)
|kzallo
�p(E1 * E2, E3))�s
ript:python�
p << r.p;
E1 << r.E1;
E2 << r.E2;��
msg="%s ## %s" % (E1, E2)
o

ilib.org.print safe todo(p[0℄,msg)
o

i.in
lude mat
h(False)

B. Excerpt of the HCL fileprefix="."patterns="./
o

i"proje
ts="/var"results="./results"website="./web"find
md="spat
h.opt %f -sp_file %p -dir %d > %o"flags="-timeout 60 -use_glimpse -D org"proje
t Linux {s
m = "git:linux.git"dir = "linuxes"
olor = 1 0 0linestyle = solidmarktype =
ir
leversions = {("linux-2.6.12", 06/17/2005, 4155826)[...℄("linux-2.6.32", 12/02/2009, 7663555)}}[...℄pattern std_
ast {file = "std/
ast_allo
.
o

i"
olor = 1 0 0}[...℄graph gr/std.jgr {xaxis = datexlegend = ""yaxis = sumylegend = "# of defe
ts"proje
t = Linux
urve pattern std_size
urve pattern std_noderef
urve pattern std_gfp
urve pattern std_
ast
urve pattern std_nulltest
urve pattern std_free
urve pattern std_zallo

urve pattern std_
allo
}graph gr/
umul-exp.jgr {xaxis = groupsxlegend = ""yaxis = expertiseylegend = "Level of expertise"legend = "defaults fontsize 6 x 25 y 15"proje
t=Standardproje
t=Nodeproje
t=Ca
heproje
t=Boot[...℄group "Cast" {
urve proje
t Standard pattern std_
ast
urve proje
t Node pattern node_
ast
urve proje
t Ca
he pattern
a
he_
ast
urve proje
t Boot pattern boot_
ast}[...℄}

	Introduction
	Linux Memory Management APIs
	Common behavior and potential defects
	The specific APIs

	Tools
	Coccinelle
	Herodotos
	Git

	Assessment
	Related work
	Conclusion
	SmPL files
	alloc_size
	alloc_noderef
	gfp_kernel
	cast_alloc
	alloc_nulltest
	kmalloc
	kzalloc
	kcalloc

	Excerpt of the HCL file

