How Often do Experts Make Mistakes?

Nicolas Palix Julia L. Lawall Gaél Thomas Gilles Muller
DIKU-APL INRIA Regal/LIP6 INRIA Regal/LIP6
University of Copenhagen University of Copenhagen France
Denmark France/Denmark {Gael.Thomas, Gilles.Muller}@lip6.fr
npalix@diku.dk julia@diku.dk
Abstract 1. Defects are introduced by less experienced developers.

Large open-source software projects involve developeth @i
wide variety of backgrounds and expertise. Such softwasgepts
furthermore include many internal APIs that developers trons
derstand and use properly. According to the intended perpbs
these APIs, they are more or less frequently used, and usdd-by
velopers with more or less expertise. In this paper, we sthdy
impact of usage patterns and developer expertise on theofate
defects occurring in the use of internal APIs. For this pnéliary
study, we focus on memory management APIs in the Linux ker-

nel, as the use of these has been shown to be highly error prone g,

in previous work. We study defect rates and developer eiggert
to considere.g, whether widely used APIs are more defect prone
because they are used by less experienced developers, threwhe
defects in widely used APIs are more likely to be fixed.

Categories and Subject DescriptorsD.2.8 [Software Engineer-
ing]: Metrics—Process metrics, Product metrics; D.R®&gram-
ming LanguagdsLanguage Constructs and Features—Patterns

General Terms Measurement, Languages, Reliability

Keywords History of pattern occurrences, bug tracking, Herodotos,

Coccinelle

1. Introduction

To ease development, large-scale software projects ane décom-
posed into multiple interdependent and coordinated meddeft-

2. Frequently used APIs are used by developers at all levels o
experience, and thus have a high rate of defect occurrences.

Nevertheless, these defects are likely to be fixed.

3. Rarely used APIs are used by only highly experienced dpvel
ers, and thus have a low rate of defect occurrences. Neverthe
less, these defects are less likely to be fixed.

4. Coding style conventions are well known to experienceetlde

opers.

The frequency of a defect varies inversely with its visibh-
pact, i.e., defects causing crashes or hangs occur less often,
while defects that have a delayed or cumulative effect ssch a
memory leaks occur more frequently.

To assess these hypotheses, several challenges must be ad-
dressed. First, we need to mine the Linux code base to find the
occurrences of defective code across the history of thereifit
versions of the software project. Next, we need to identify de-
veloper who introduced each defect. Finally, we need a means
evaluate the level of expertise of the developer at the theede-
fect was introduced. To address these issues, we use thn€ltec
source code matching tool to detect defects in the uses ofomyem
management functions, focusing specifically on code traatgs
the usage protocol of the memory management API, code that
does not satisfy the global Linux kernel coding style, andiectihat
uses memory management functions inefficiently. We therthese
Herodotos tool [7] to correlate the defect occurrencessactbe

ware developers working on one module must then be aware of,different versions. Finally, we use the git [4] source codenager

and use properly, functions from the APIs of other modulekeW
a usage protocol is associated with these API functionsytroe
carefully followed to ensure the reliability of the systeharge-
scale software projects typically also impose coding cotiwas
that should be followed throughout the software project arel
not specific to any given API. These conventions ease coderund
standing, facilitate code review, and ease the maintengiruzess
when many developers are involved in a particular piece deco
and when new developers begin to work on the software project
In this paper, we investigate the degree to which develogiers
different levels of expertise respect AP| usage protocots @d-
ing conventions. We focus on the Linux operating systemctvhi
as an open source system makes its complete developmeariyhist
available. Furthermore, we focus on memory management, ABls
their use has been found to be highly error prone [3]. Thex kar-
nel indeed provides both a general-purpose memory manageme
API| and highly specialized variants. Thus, it is possiblecom-
pare defect rates in APIs that have a related functionalityttat
require different degrees of expertise to use correctly.spécifi-
cally assess the following hypotheses that may be consideree
generally relevant to open-source software:

used by Linux kernel developers for version control in orter
extract information about developer expertise.

2. Linux Memory Management APIs

In user-level code, the most common memory management func-
tions aremalloc andfree. These functions are, however, not avail-
able at the kernel level. Instead, the kernel provides esetaof
memory management APIs, some generic and others more lspecia
purpose. We first describe the commonalities in these ARIshaen
present four Linux kernel memory management APIs in detail.

2.1 Common behavior and potential defects

All of the memory management APIs defined in the Linux kernel
impose essentially the same usage protocol, as shown imeFigu
and illustrated by the following code:

x = alloc(sizeflag);
if (x == NULL) { ... return —ENOMEM; }

fre.e(x);

choose size

choose flag

Figure 1. Usage protocol for Linux kernel memory management
functions

‘constructcall}%‘ test result }%‘ free result

[Name [Description [Potential Impact]

sizeof Size argument expressed as the size ol @oding style
type rather than the result of dereferencing
the destination location.

noderef Size argument expressed as the size of duffer overflow
pointer, rather than the pointed type.

flag Flag that allows locking when a lock i$ hang
already held.

cast Cast on the result of an allocation function. coding style

null test Missing NULL test on the result of an allo- crash
cation function (inverted when NULL tes
is not required).

free Missing deallocation of a pointer that i5 memory leak
only accessible locally.

memset Explicit zeroing of the allocated memory inefficient
rather than allocating using a zeroing allp-
cation function.

array alloc | Allocation of an array without using a ded|- buffer overflow
cated array-allocating function.

Table 1. Defect kinds studied

In this usage protocol, the allocation function takes twguarents:

a size indicating the number of bytes to allocate and a flaigatd
ing how the allocation may be carried out. The allocatiorcfiom
then returns either a pointer to the allocated region of mgro
NULL, indicating that some failure has occurred. This resulttmus
thus be tested fafULL before using the allocated memory. Finally,

Memory Management API |

|

‘ Pattern ‘| Standard[Node [Cache | Bootmem |
basic 4240 52 264 105
array 363 N/A N/A N/A
zeroing 5125 25 96 N/A

[TOTAL [9728 77 360 | 105 |

Table 2. Number of occurrences of the memory allocation func-
tions in Linux 2.6.32 (released December 2009)

Choose flag The flag argument indicates some constraints on the
memory allocation process. The most common valuesGEPe -
KERNEL, indicating that the memory allocation process may sleep
if adequate memory is not immediately available, @RP_ATOMIC,
indicating that such sleeping is not allowed, typically dese the
function is called in a context in which interrupts are tutrdf.
Using GFP_ATOMIC whereGFP_KERNEL could be used can cause
the memory allocation to fail unnecessarily, while usitEp_-
KERNEL whereGFP_ATOMIC is required camangthe kernel (defect
“flag”).

Construct call The Linux kernel memory allocation functions
have return typeroid *, while the location that stores the result
typically has some other type, such as that of a pointer toesom
structure. Some programmers thus cast the result of the ngemo
allocation to the destination type. Such a cast is, howevet,
required by the C standard and is against the Linux kerading
style (defect “cast”).

Testresult Ifthe pointer resulting from a call to an allocation func-
tion is not immediately tested for being NULL, then the firstef-
erence of a NULL result will normallycrash the kernel (defect
“null test”). This dereference may be far from the allocatkgite,
making the problem difficult to diagnose.

the allocated memory should be freed when it is not useful any Free result In Linux kernel code, a common pattern is for one

more, using the corresponding deallocation function.

Each step in this usage protocol introduces possibilitas f
defects. These defects may be violations of the Linux keroding
style, that at best only have an impact on the maintainglafithe
code, or they may induce runtime errors, such as buffer @vesfl
hangs, crashes, or memory leaks. These defects are surachizriz
Table 1 and are described in detail below, for each step afshge
protocol:

Choose size The size argument to a memory allocation function
is typically determined by the type of the location that esthe
result of the call. One possibility is to express the sizdieitly in
terms of the type of this location (defect “sizeof”):

x = kmalloc(sizeofstruct foo),...);

The Linux kernelcoding style however, suggests to express the
size as the size of the result of dereferencing the locatsedfi

x = kmalloq(sizeo{*x),. . .);

This strategy makes the size computation robust to chamgthe i
type ofx.

The approach preferred by the Linux kernel coding style,-how
ever, introduces the possibility of another kind of deféttyhich
the size is computed in terms of the pointer itself, instefad it
it referencese.g:

x = kmalloq(sizeofx),. . .);

In this case, only a few bytes are allocated, leading to dylike
subsequentuffer overflow (defect “noderef”).

function to allocate multiple resources. Each of thesecations

may fail, in which case all of the previously allocated rases

must be freed. Neglecting to free allocated memory in the cés
such a failure causesmemory leak (defect “free”).

2.2 The specific APIs

The Linux kernel provides a number of different memory mamag
ment APIs for different purposes. These differ in when they be
invoked and the features they provide. The APIs we consider a
described below. Table 2 summarizes the usage frequentyeiof t
allocation functions.

Standard kmalloc is the standard memory allocation function
in the Linux kernel, comparable talloc at the user level. Two
variants have recently been introduc&dalloc was introduced
in Linux 2.6.9 (October 2004) for allocating arrays. Thisdtion
takes the number of elements and the size of each elemenp-as se
arate arguments, and protects against the case where itbeircp
overflows the size of an integer. The elements of the arraglace
initialized to 0.kzalloc was introduced in Linux 2.6.14 (October
2005) for allocating a region of memory in which all elemeats
initialized to 0 but that is not an array. Memory allocatedhnall

of these functions is freed usingree.

Node kmalloc_node targets NUMA architectures, where mem-
ory may be local to a processor or shared between a subset of th
processors, and access to non-local memory is very exgesiis
function thus takes an extra argument that specifies the thade
should be associated with the allocated memkgglloc_node

is kmalloc_node’s zeroing counterpart. Memory allocated with
both of these functions is freed usikgree. Some other variants

of these functions exist that aid in debugging, but theseanaly
used and we do not consider them further.

Cache kmem_cache_alloc allocates memory from a previously

allocated memory cachkmem_cache_zalloc is its zeroing coun-
terpart. Memory allocated with both of these functions éeff us-
ing kmem_cache_free.

Boot These functions must be used to allocate memory during

the booting process. They are analogousk#alloc in that the
memory is already zeroed. They furthermore always returalid v

pointer, nevelNULL; in the case of an allocation error, the kernel
panics. These functions do not take a flag argument. We camsid

only the allocation functionslloc_bootmem, alloc_bootmem_-
low, alloc_bootmem_pages, andalloc_bootmem_low_pages.
Memory allocated with all of these functions is freed usfage _-
bootmem.

In addition to the defect types outlined in Section 2.1, the d
ferent features of the memory management functions withghe
API introduce the possibility of using one of these functiém the
wrong situation. In terms of defects, we consider cases evtiex
zeroing and array allocating variants, if available, areused and
the corresponding code is inlined into the call site (deféotem-
set” and “array alloc”, respectively). For th@1loc_bootmem func-
tions, which do zero the memory and do not retNUlL, we con-
sider code that performs unnecessary zeroingl@mnd test opera-
tions. These mistakes essentially only impact the effigiaridhe
code, but may also impact readability, and thus subsequoztg c
maintenance.

3. Tools

To carry out our study, we use the following tools: 1) Coctiento
find occurrences of defects in recent versions of the Linuxe®
tree, 2) Herodotos to correlate these occurrences acrokgpleu
versions, and 3) git to identify the developer responsibteiritro-
ducing each defect occurrence and to obtain informationizthe
other patches submitted by this developer. Coccinellepficble
to any software implemented in C. Herodotos is applicablenty
software at all, as it is language-independent. Git can ladsosed
to access developer information for any software, as lonig s
some compatible tool has been used as the version contralgaan
during the software’s development.

3.1 Coccinelle

Coccinelle is a tool for performing control-flow based patte
searches and transformations in C code [2, 6]. It providesna |
guage, SmPL, for specifying searches and transformatiodsaa

engine for performing them. In this work, we use SmPL to cre-

ate patterns representing defects and then use Coccioaléatch
for these patterns across different versions of the Linuxre®
tree. Patterns are expressed using a notation close toesoode,

but may contairmetavariablego represent arbitrary sub-terms. A

metavariable may occur multiple times, in which case alluocc

rences must match the same term. SmPL furthermore provides t
operator “..", which connects separate patterns that should be

matched within a single control-flow path. This featureapfor

example, matching an execution path in which there is firsilla ¢

to a memory allocation function and then a return with noriga-
ing save or free of the allocated data, amounting to a meneay. |
More details about Coccinelle, including numerous exas)ee
found in previous work [2, 5, 6].

3.2 Herodotos

To understand how defects have been introduced in the Lirtx k
nel, we have tocorrelate the defect occurrences found by Coc-

Pattern | Memory Management API

| Standard[Node | Cache [Bootmem |
sizeof 30.64% | 28.57% N/A 16.19%
noderef 0 0 N/A 0.95%
flag 0.01% 0 N/A N/A
cast 0.79% 2.60% | 6.39% 29.52%
null test 1.04% 6.49% | 3.06% 8.57%
free 0.10% 0 | 0.56% 0
memset 2.92% 1.92% | 3.03% 1.90%
array alloc 3.32% 2.60% | 0.28% 0.95%

Table 3. Comparison for Linux 2.6.32

cinelle across multiple versions. Indeed, the position afegect
may change across versions due to the addition or removahef o
code in the same file. To correlate defect occurrences, wehese
Herodotos tool [7]. Herodotos uses Unix diff to identify ttiéer-
ences in each affected file from one version to the next andlblge
predicts the change in position of a defect. If a defect ofstime
type is reported in the predicted position in the next verstbey
are considered to be the same defect. Otherwise, the dsfecht
sidered to have been corrected. Herodotos also can be catfigu
to produce a wide variety of graphs and statistics represgtite
defect history.

3.3 Git

Since version 2.6.12 (June 2005) Linux has usedgtiteversion
control system [4]. Git maintains a graph representing tlogept
history, including commits, forks and merges. Each of theser-
ations is referenced by a SHA1 hash code. This hash code gives
access to the changes in the repository and some related meta
information. For instance, Git registers the name and thailevh
the author and the committer of a change, short and longigescr
tions of the change, and the date on which the change was ¢commi
ted.

Git includes various options for browsing the commit higtor
In this work, we use git to trace the contributions of eachetigver.
Starting from the earliest version in which Coccinelle fiadgiven
defect, we use thblameoption to find the name of the developer
who has most recently edited the defective line in a prior roitm
To evaluate the level of expertise of this developer, we twmt
the number of patches from this developer that were acceypied
to the one introducing the defect and the number of days lestwe
the developer's first accepted patch and the defective oree. W
consider the level of expertise of the developer to be thelymb
of these two quantities.

4. Assessment

We now assess the hypotheses presented in Section 1 for the me
ory management APIs. To support our assessment, we have col-
lected various statistics. Table 3 presents the percemtfdefect
occurrences as compared to all occurrences of each kind mf me
ory allocation function for Linux 2.6.32, which is the mostent
version. Figure 2 presents the same information, but fove
sions since Linux 2.6.12. The defect Flag is omitted, bezaiss
frequency is very close to 0. Figure 3 presents the averfegphn
of these defects. Finally, Figure 4 presents the number\afldp-
ers introducing each kind of defect (on the X axis) and thegrage
level of expertise, calculated as described in Section 3.3.

Our assessment of each of the five hypotheses is as follows:

Defects are introduced by less experienced developdfgure 4
shows that in most cases, the expertise of the developers who
introduce defects is indeed loie., they have participated in kernel
development for only a short time and have submitted onlyna fe
patches. But for two defect types for the Node API and for one

defect %
N
o
defect %

2 2
X N

(a) Bad sizeof

e e %

defect %
defect %

5
04 0 T T

(b) Unneeded cast of void pomter

—e— Standard

—e— Cache

defect %

ﬁ% ﬁb Q% 0
(c) Missing/unneeded NULL test

%, 2,

—e— Standard array
Standard missing deref.
—a— Boot missing deref.

Node

defect %
N

2, B, 2, 2, 2, 2, KN 2 2, 2,) B, 2, 2, 2,
(d) Missing free (e) Unneeded memset (U] Other defects
Figure 2. Defect ratio per uses for each defect kind
3 B Standard use of the array allocation functigzalloc, which has an average
Node lifespan of two years. The frequency of this defect, howgiger
0w 2 B Cache consistently very low.
@ B Boot
& 1 Rarely used APIs have a low rate of defects, but these defarts
rarely fixed The data in Figure 2 does not support the hypothesis
0 — of a low rate of defects, as it is often the rarely used APIséNod
\S}éo Y% %, &Q Y, Cache, and Boot that have the highest frequency of defeots. F
O ”%f v ,@ @, & example, Boot has the highest rate of improper NULL tests. In
i & this case, the API has the special property that a NULL test is
Figure 3. Average defect lifespan not _n_eede_d, and thus the res_ults show that developers af_ellyot
® familiar with the features of this API. The defect rates alatively
2 B Standard stable, without the substantial drops over time seen in 8ise of
o 15 Node the much more frequently used Standard. Defects also hareya |
< m Cache lifespan, notably of typically two years or more for Boot.
)
S 10 ® Boot Coding style conventions are well known to experienced deye
3 5 g g ers This hypothesis is also not supported by Figure 2. The coding
3 <z o< Mo« << style defects Sizeof and Cast indeed have the highest ineg u#
-9 Q== Q=== jlyl _!'ZZZ all of the considered defects, and the frequencies are $tighe
SR N PREISERE S R Node and Boot, respectively. These are are highly speethidIs
”’\S\' 1, & o 1, "47 < and thus are only likely to be used by experienced develogters
’e@o %, 4?9 Ro8 OQ % %, ’%;} may be that such developers have a more specialized foaiaran
” G’co,f B, S thus not aware of these conventions. Or these APIs may bédeons

Figure 4. Developer expertise per allocator kind. No data means
no defects of the given type. N/A means the defect type ikeivamt
to the given API.

defect type for the Boot API, the average level of expertse i
relatively high. We conjecture that these APIs are mostlgdus
by experienced developers, and thus only experienced ajmmsl
introduce the defects. For Node, at least, the number oflalezes

in these cases is also very small.

Frequently used APIs have a high rate of defects, but thestedes
are quickly fixed The Standard APl is used much more frequently
than the others, and in some cases, notably sizeof and drhag

a higher defect frequency as well. But it also has a loweralefe
frequency for the remaining defect kinds. Some defect katusv

a slight or substantial decrease in their frequency for thadrd
API, notably the use ohemset rather than the zeroing function

ered less often when doing coding style cleanups.

The frequency of a defect varies inversely with its impadioderef

is likely to lead to a kernel crash, as much less memory icatkyl
than intended. Flag can cause a kernel hang. A missing free ca
cause a memory leak. All of these defect kinds do indeed occur
very infrequently, as shown by Table 3. Missing NULL tesisywh
ever, are relatively frequent, found in up to 10% of all ocences

for the Node API. We conjecture that the memory allocatiancfu
tions do not returWULL very often, and thus the impact of the
defect is not seen very often in practice.

5. Related work

The closest work to this one is our paper at AOSD 2010 [7], tvhic
presents Herodotos. The experiments in that paper haveyer lar
scope, as they consider four open source projects and a raiuige
of defects. In this paper, on the other hand, we consider iremo
depth the defects in the use of a single type of API, in onexsoé
project. We have also added the assessment of developetisape

kzalloc. Such defects have an average lifespan of around one yearto the collected statistics. In future work, we will appletanalyses

while the lifespan of the comparable defect for the Boot ARWo
years. Other defect kinds essentially remain steady, hotadnon-

presented here to the wider set of examples considered XOB&®
paper.

Zhou and Davis assess the appropriateness of statistickso
for describing the patterns of bug reports for eight operrcou
projects [9]. They do not, however, distinguish betweeffedént
defect types, nor do they study the level expertise of theldpers
who introduce the bugs. Chaet al. [3] do consider specific bug
types in earlier versions of Linux, but do not study devetope
expertise.

Anvik and Murphy [1], and Schuler and Zimmermann [8] pro-
pose approaches to determine implementation expertiss tas
mining bug reports and code repositories. However, thegrdene
who has expertise on a particular piece of code while we vesint t
vestigate the expertise of a developer who commits codeaong
a particular defect.

6. Conclusion

In this paper, we have studied the history of a set of defqugy
affecting a range of memory management APIs in the Linuxéern
code, considering both the percentage of defects as cothpare
the total number of occurrences of each considered funetimh
the expertise of developers that introduced these defBeised
on this information, we have assessed a collection of hyzeth,
differentiating between widely used APIs and more spewzali
ones. The hypotheses that the developers who introducetslefe
have less experience, that defects in the use of widely usdd A
are fixed quickly, and that defects in the use of rarely usets AP
tend to linger are largely substantiated. On the other héel,
percentage of defect occurrences does not appear to béatedre
to the frequency of use of the API, expert developers do reshde

be more aware of coding conventions than less expert onéshan
frequency of a defect is not always inversely related toadteptial
impact. More work will be required to assess these hypothese
the context of Linux and the memory management APIs, as well a
other software projects and APIs.

Availability
The data used in this paper are available at
http://www.diku.dk/“npalix/acp4is10/.

References

[1] J. Anvik and G. C. Murphy. Determining implementationpextise
from bug reports. IMSR '07: Proceedings of the Fourth International
Workshop on Mining Software Repositoriédinneapolis, USA, May
2007. IEEE Computer Society.

[2] J.Brunel, D. Doligez, R. R. Hansen, J. Lawall, and G. MullA founda-
tion for flow-based program matching using temporal logid arodel
checking. InThe 36th annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languaggsages 114-126, Savannah, GA,
USA, Jan. 2009.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An éncgpl
study of operating systems errors.Rroceedings of the 18th ACM Sym-
posium on Operating System Principlegmges 73-88, Banff, Canada,
Oct. 2001.

[4] Git: The fast version control systerhttp://git-scm.com/.

[5] J. L. Lawall, J. Brunel, R. R. Hansen, H. Stuart, G. Muliend N. Palix.
WYSIWIB: A declarative approach to finding protocols and sug
Linux code. InThe 39th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, (DSN 2@@@)es 43-52, Esto-
ril, Portugal, June 2009.

Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Doenting and
automating collateral evolutions in Linux device drivern EuroSys
2008 pages 247-260, Glasgow, Scotland, Mar. 2008.

N. Palix, J. Lawall, and G. Muller. Tracking code patterover
multiple software versions with Herodotos. Froc. of the ACM
International Conference on Aspect-Oriented Softwareelmment,
AOSD’1Q Rennes and Saint Malo, France, Mar. 2010. To appear.

6

[7

[8] D. Schuler and T. Zimmermann. Mining usage expertisenfre@rsion
archives. InMSR ’'08: Proceedings of the 2008 international working
conference on Mining software repositorigsages 121-124, Leipzig,
Germany, May 2008.

[9] Y. Zhou and J. Davis. Open source software reliability delo an
empirical approach. 15-WOSSE: Proceedings of the fifth workshop
on Open source software engineeripgges 1-6, St. Louis, MO, USA,
2005. ACM.

A. SmPL files
A.1 alloc_size

virtual org

Q@ r depends on org disable sizeafypeexpr @
type T,T1;

T *x;

expression N;

position p;

Q@

(
Xx@p = (T1)\(kmalloc \| kzalloc \)(<+...

|
x@p = (T1)kcalloc(n, <+...

)

sizeof(T) ...+>, ...)

sizeof(T) ...+>, ...)

Q@script:python@
p << r.p;

X << r.x

xtype << r.T;
Q@

msg= "var: %s type: %s " % (XXtype
coccilib.org.print_safe_todo(p[0],msg
cocci.include_match(False)

A.2 alloc_noderef

virtual org

Q@ r depends on org @
expression *X;
expression N;
position p;

Q@

\(kmalloc \| kzalloc \)(<+...

kcalloc(n, <+...

)

@bad deref@
position r.p;
expression €

sizeof@p(X) ...+>, ...)

sizeof@p(X) ...+>, ...)

constant C;

Q@
\(sizeof@p(*e) \| sizeof@p(c) \)

Q@script:python depends on !bad.deref@
p << r.p;

X << r.x

Q@

msg= "var: %s" % (X)
coccilib.org.print_safe_todo(p[0],msg
cocci.include_match(False)

http://www.diku.dk/~npalix/acp4is10/
http://git-scm.com/

A.3 gfp_kernel

virtual org

©r depends on org@
expression EL
position [;

@@

(

read_lock_irq

write_lock_irq

read_lock_irgsave

write_lock_irgsave

local_irqg_save

spin_lock_irq

spin_lock_irgsave

) (EL...);
... when!= E1
when any

\(kmalloc\|kcalloc\|kzalloc\)(...,<+... GFP_.KERNEI®p ...4+>)

Q@script:python@
p << r.p;
Qe

msg="%s::%s" % (p[0].file, p[0].line)
coccilib.org.print_todo(p[0], msg
cocci.include_match(False)

A.4 cast_alloc

virtual org
virtual patch

@ depends on patch && lorg disable dropcast @
type T;
@@

—(T%
\(kcalloc \| kmalloc \| kzalloc \)(...)

©r depends on !patch && org disable dropcast @
type T;
position p;

Q@
(T@p)\ (kmalloc\|kzalloc)|kcalloc\)(...)

©script:python@
p << r.p

<< T,

Q@

msg= "%s" % (t)
coccilib.org.print_todo(p[0], msg
cocci.include_match(False)

A.5 alloc_nulltest

virtual org

©r depends on org@
type T;

expression *X;
identifier f;
constant char *C;
position pl,p2;

Q@

x@pl = (T)\(kmalloc)\|kcalloc\|kzalloc\)(...);
... when!= x == NULL

when!= x != NULL

when!= (x || ...)
(

kfree(X)

|
f(...CoX..)
|

fop2(....x...)
|

x—>f@p2

)

©script:python@
X << r.x

pl << r.pL;

p2 << r.p2

Q@

msg= "%s" % (X)
coccilib.org.print_todo(p1[0],msg
coccilib.org.print_link(p2[0])
cocci.include_match(False)

A.6 kmalloc

virtual org

@r exists0

type T;

local idexpression X;
statement S

expression E;
identifier f,l;

position pl,p2,p3;
expression *ptr != NULL;
Q@

if ((x@pl = (T)\(kmalloc\|kzalloc\|kcalloc\)(...)) == NULL) S

x@pl = (T)\(kmalloc\|kzalloc\|kcalloc\)(...);

if (X == I\IULL) S
)
<...when!= x
when!=if (...) { <+...x..4+>}

(

gota@p3 |;
|

x—>f = E
)

>

return \(0\|<+...x...+>\|ptr\);
|

return©p? .. .;

)

©script:python@
X << r.x

pl << r.pL;

p2 << r.p2;

Q@

coccilib.org.print_todo(p1f0], x)

for p in p2
coccilib.org.print_link(p)

cocci.include_match(False)

A7 kzalloc B. Excerpt of the HCL file

prefix="."
// Options —na.includes —include.headers patterns="./cocci"
virtual org projects="/var"

results="./results"

website="./web"

findcmd="spatch.opt %f -sp_file %p -dir %d > %o"
flags="-timeout 60 -use_glimpse -D org"

©r depends on org@
type T;

expression X;
expression ELE2;
position pl,p2;

statement S project Linux {

iterator |; scm = "git:linux.git"
@ dir = "linuxes"
color =100
x = (T)kmalloc@pl(E1LE2); linestyle = solid
... when!= x marktype = circle
if (Xx==NULL || ...) { ... return..; } versions = {
... when!= x ("linux-2.6.12", 06/17/2005, 4155826)
when!= for(...;...;...) S [...]
when!= while(...) S ("linux-2.6.32", 12/02/2009, 7663555)
when!=1(...) S 3}
memset@p2(x,0,...); 3}
©s depends on org exist® [...]
position r.pLr.p2 e
@@
pattern std_cast {
... when!= kmalloc@pl file = "std/cast_alloc.cocci
memset©@p2(...); }color =100
Oscript:python depends on !s@
pl << r.pL L...]
X << r.x
Q@ graph gr/std.jgr {
xaxis = date
msg="%s" % (X) xlegend = ""
coccilib.org.print_safe_todo(pl[O], msg yaxis = sum
cocci.include_match(False) ylegend = "# of defects"
project = Linux
A.8 kcalloc curve pattern std_size
curve pattern std_noderef
// Options —na.includes —include_headers curve pattern std_gfp
virtual org curve pattern std_cast
curve pattern std_nulltest
©r depends on org exist$ curve pattern std_free
expression E1, E2E3; curve pattern std_zalloc
position p; curve pattern std_calloc
constant Cl1, C2 3}
Q@

graph gr/cumul-exp.jgr {

kmalloc(C1* C2, E3) xaxis = groups

| xlegend = ""
kzalloc(Cl * C2, E3 yaxis = expertise
Fattoc) ylegend = "Level of expertise"

kmalloc@p(El * E2, E3) .
| legend = "defaults fontsize 6 x 25 y 15"

kzalloc@p(El * E2, E3) e cteStandard
project=Standar

project=Node

@script:python@ project=Cache
p << r.p; project=Boot
El << r.EL
E2 << r.E2 [...]
@@
group "Cast" {
msgz."'/:s # 7'5"_% (EL E2) curve project Standard pattern std_cast
cocC%l_lb'org'Prmt‘Safe‘todo(p[ol’mSg curve project Node pattern node_cast
cocei.include _match(False) curve project Cache pattern cache_cast
curve project Boot pattern boot_cast
}
[...1

}

	Introduction
	Linux Memory Management APIs
	Common behavior and potential defects
	The specific APIs

	Tools
	Coccinelle
	Herodotos
	Git

	Assessment
	Related work
	Conclusion
	SmPL files
	alloc_size
	alloc_noderef
	gfp_kernel
	cast_alloc
	alloc_nulltest
	kmalloc
	kzalloc
	kcalloc

	Excerpt of the HCL file

