
Coccinelle: A Program Matching and
Transformation Tool for Systems
Code

Gilles Muller (INRIA), Julia Lawall (DIKU),

Jesper Andersen, Julien Brunel, René
Rydhof Hansen, Yoann Padioleau, and

Nicolas Palix

http://coccinelle.lip6.fr

The problem: Dealing with Systems
Code

� It’s huge

� It’s configuration polymorph

� It’s (unfortunately) buggy

� It’s often written in C

� It evolves continuously

Two Examples

� Bug finding (and fixing)
� Search for patterns of wrong code
� Systematically fix found wrong code

� Collateral evolutions
� Evolution in a library interface entails lots

of Collateral Evolutions in clients
� Search for patterns of interaction with the

library
� Systematically transform the interaction code

The Coccinelle tool

� Program matching and transformation for
unpreprocessed C code.

� Fits with the existing habits of Systems
(Linux) programmers.

� Semantic Patch Language (SmPL):
� Based on the syntax of patches,
� Declarative approach to transformation
� High level search that abstracts away from

irrelevant details
� A single small semantic patch can modify hundreds

of files, at thousands of code sites

Using SmPL to abstract away from
irrelevant details

� Differences in spacing, indentation, and
comments

� Choice of the names given to variables
(metavariables)

� Irrelevant code (‘...’, control flow oriented)

� Other variations in coding style
(isomorphisms)

e.g. if(!y) ≡ if(y==NULL) ≡ if(NULL==y)

Bug finding and fixing

� The “!&” bug
C allows mixing booleans and bit constants

if (!state->card->
ac97_status & CENTER_LFE_ON)

val &= ~DSP_BIND_CENTER_LFE;

In sound/oss/ali5455.c until Linux 2.6.18
(problem is over two lines)

A Simple SmPL Sample

@@

expression E;

constant C;

@@

- !E & C // !C is not a constant

+ !(E & C)

96 instances in Linux from 2.6.13 (August 2005) to v2.6.28
(December 2008)

58 in 2.6.20 (February 2007),

2 in Linux-next (26th May 2009)

Collateral Evolutions

int bar(int x, int y){

Evolution
becomes

Collateral Evolutions (CE) in clients

foo(1);

bar(1,?);

foo(foo(2));
bar(bar(2,?),?);

int foo(int x){

lib.c

client1.c client2.c

clientn.c

foo(2);

bar(2,?);

if(foo(3)) {

if(bar(3,?)) {

Legend:
before

after

CE in Linux device drivers

� Many libraries and many clients:
� Lots of driver support libraries: one per device

type, one per bus (pci library, sound library, …)
� Lots of device specific code: Drivers make up more

than 50% of Linux

� Many evolutions and collateral evolutions
1200 evolutions in 2.6, some affecting 400 files, at

over 1000 sites [EuroSys 2006] (summer 2005)

� Taxonomy of evolutions :
Add argument, split data structure, getter and setter
introduction, protocol change, change return type,
add error checking, …

Example from Linux 2.5.71

int a_proc_info(int x
,scsi *y

) {
scsi *y;
...
y = scsi_get();
if(!y) { ... return -1; }
...
scsi_put(y);
...
}

Delete calls

to library

Delete error
checking

code

From local var
to

parameter

� Evolution: scsi_get()/scsi_put() dropped from SCSI library

� Collateral evolutions: SCSI resource now passed directly to
proc_info callback functions via a new parameter

Legend:
before

after

Semantic Patches

int a_proc_info(int x
+ ,scsi *y

) {
- scsi *y;

...
- y = scsi_get();
- if(!y) { ... return -1; }

...
- scsi_put(y);

...
}

Control-flow
‘...’

operator

function a_proc_info;

identifier x, y;

@@

@@

Affected Linux driver code

int s53c700_info(int limit)
{

char *buf;
scsi *sc;
sc = scsi_get ();
if(!sc) {

printk(“error”);
return -1;

}
wd7000_setup(sc);
PRINTP(“val=%d”,

sc->field+limit);
scsi_put (sc);
return 0;

}

int nsp_proc_info(int lim)
{

scsi *host;
host = scsi_get ();
if(!host) {

printk(“nsp_error”);
return -1;

}
SPRINTF(“NINJASCSI=%d”,

host->base);
scsi_put (host);
return 0;

}

drivers/scsi/53c700.c

Similar, but not identical

drivers/scsi/pcmcia/nsp_cs.c

Applying the semantic patch

@@
function a_proc_info;

identifier x, y;

@@
int a_proc_info(int x

+ ,scsi * y
) {

- scsi * y;
...

- y = scsi_get();
- if(! y) { ... return -1; }

...
- scsi_put(y);

...
}

proc_info.sp

int nsp_proc_info(int lim)
{

scsi *host;
host = scsi_get ();
if(!host) {

printk(“nsp_error”);
return -1;

}
SPRINTF(“NINJASCSI=%d”,

host->base);
scsi_put (host);
return 0;

}

int s53c700_info(int limit)
{

char *buf;
scsi *sc;
sc = scsi_get ();
if(!sc) {

printk(“error”);
return -1;

}
wd7000_setup(sc);
PRINTP(“val=%d”,

sc->field+limit);
scsi_put (sc);
return 0;

}

$ spatch –sp_file proc_info.sp
–dir linux-next

Applying the semantic patch

@@
function a_proc_info;

identifier x, y;

@@
int a_proc_info(int x

+ ,scsi * y
) {

- scsi * y;
...

- y = scsi_get();
- if(! y) { ... return -1; }

...
- scsi_put(y);

...
}

int s53c700_info(int limit , scsi *sc)
{

char *buf;

wd7000_setup(sc);
PRINTP(“val=%d”,

sc->field+limit);

return 0;
}

proc_info.sp

int nsp_proc_info(int lim , scsi *host)
{

SPRINTF(“NINJASCSI=%d”,
host->base);

return 0;
}

$ spatch –sp_file proc_info.sp
–dir linux-next

How does the Coccinelle tool work?

Transformation engine

Parse C file Parse Semantic Patch

Translate to CFG Translate to CTL

Expand isomorphisms

Match CTL against CFG using
a model checking algorithm

Modify matched code

Unparse

Computational
Tree Logic
with extra
features

[POPL 2009]

Other issues

� Need to produce readable code
� Keep space, indentation, comments
� Keep CPP instructions as-is. Also programmer may

want to transform some #define,iterator macros
(e.g. list_for_each)

� Interactive engine, partial match
� Implementation of isomorphisms

� Rewriting the Semantic patch (not the C code),
� Generate disjunctions

Very different from most other C tools

60 000 lines of OCaml code

Evaluation on Collateral Evolutions
[Eurosys 2008]

Experiments

� Methodology
� Detect past collateral evolutions in Linux 2.5 and

2.6 using the patchparse tool [Eurosys’06]

� Select representative ones
� Test suite of over 60 CEs

� Study them and write corresponding semantic
patches

� Note: we are not kernel developers

� Going "back to the future". Compare:
� what Linux programers did manually

� What Coccinelle, given our SPs, does automatically

Test suite

� 20 Complex CEs : bugs introduced by the
programmers
� In each case 1-16 errors + misses

� 23 Mega CEs : affect over 100 sites on Linux between
2.6.12 and 2.6.20
� 22-1124 files affected
� Up to 39 human errors
� Up to 40 people for up to two years

� 26 CEs for the bluetooth directory update from
2.6.12 to 2.6.20
� Median case

More than 5800 driver files

Results

� SP are on average 106 lines long (6-369)
� SPs often 100 times smaller than “human-

made” patches. A measure of time saved:
� Not doing manually the CE on all the drivers
� Not reading and reviewing big patches, for people

with drivers outside source tree
� Correct and complete automated evolutions

for 93% of the files
� Problems on the remaining 7%: We miss code sites

� CPP issues, lack of isomorphisms (data-flow and inter-
procedural)

� We are not kernel developers … don’t know how to specify

� Average processing time of 0.7s per file

Sometimes the tool was right and the human wrong

Impact on the Linux kernel

� Collateral evolution related SPs
� Over 11 semantic patches

� Over 52 patches

� SPs for bug-fixing and bad
programming practices
� Over 57 semantic patches

� Over 148+20 patches

Future/Current Work
Coccinelle in the large

� Management of conflicts between Linux
kernel and services (detection, solving)

� Version consistency

� Protocol-based bug detection in Linux
[DSN2009]

� Collaborative design of rules
� Rule ranking
� Collaborative refinements

Conclusion

� SmPL: a declarative language for
program matching and transformation

� Looks like a patch; fits with Systems
(Linux) programmers’ habits

� Quite “easy” to learn; already accepted
by the Linux community

� A transformation engine based on model
checking technology

Questions?

http://coccinelle.lip6.fr

Why Coccinelle ?
A Coccinelle (ladybug) is a bug that eats

smaller bugs

